HP 9000 Series 200 Computers | () Pyt

Pascal 3.0
Procedure Library

Pascal 3.0 Procedure Library
for the HP 9000 Series 200 Computers

Manual Part No. 98615-90030

© Copyright 1984, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

i

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

September 1984 . First Edition with update.

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard Fort Collins
Systems Division products sold inthe U.S.A. and Canada, this warranty applies for ninety (90) days from the date of delivery ~
Hewlett-Packard will, atits option, repair or replace equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be
shipped freight prepaid. Repairs necessitated by misuse of the equipment, or by hardware, software. or interfacing not
provided by Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU wili execute its programming instructions
when properly installed on that CPU. HP does not warrant that the operation of the CPU. software, or firmware will be uninter-
rupted or error free

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL. INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-
Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

* For other countries, contact your local Sales and Support Office to determire warranty terms

Table of Contents

Chapter 1: Overview

IntrodUCtioN 1
Prerequisites. 1
Chapter OVerview 1

Chapter Previews. 2

Overview of Librariesand Modules. 3
Modules and Libraries ot 3
The Librarian 3
Example Modules 3
Compiling and Running the Example Program 6
Setting Up Mass StOraget 8
Using the Librarian 9

Overview of the Procedure Library 12
Standard LIBRARY Modules. e 12
The IO Modules.o e 14
The INTERFACE Modules. e 14
The GRAPHICS Modules 15
The SEGMENTER Module e 17

Building Your Own Library 18
General Recommendationsot 18
Specific Recommendationsco i 18
Module Dependency Table 20

Chapter 2: Interfacing Concepts

INtrodUction 21
Terminology 21
Why Do You Need an Interface?. 23
Electrical and Mechanical Compatibility. 24
Data Compatibility e 24
Timing Compatibility. 24
Additional Interface Functions. 24
Interface Overview. 25
HP-IB Interface PP 25
Serial Interface. 26
GPIO Interface. o 26
Data Representations i 27
Bitsand Bytes 27
Representing Numbers. 28
Representing Characters i 29
Representing Signed Integers 29

Representing Real Numbers 31

iii

iv

Chapter 3: The IO Procedure Library

Introduction 33
Pascal /O 33
/O Library Organization. 34
GENERAL 34
HP-IB . 34
SERIAL . oo 35
I/O Library Initialization. 35
GENERAL Modules 36
HPIBModules 37
SERIAL Modules. 38
IODECLARATIONS Modules i, 38
Range of Interface Select Codes and Device Selectors. 38
Information about Interface Cards 39
Other Types. 42

Chapter 4: Directing Data Flow

Introduction 43
Specifyinga Resource. 43
Simple Device Selectors. 43
Addressed Device Selectors. 44

Chapter 5: Outputting Data

Introduction 45
Free-Field Output 46
Real Expressions. 46
String Expressions. 47
Characters 48
Words. 48
Formatted Output 50
STRWRITE . .. 50

Chapter 6: Inputting Data

Introduction 53
Free-Field Input 54
Real Variables 54
String Variables 55
Characters 56
Woords. . . o 56
Skipping Data 57
Formatted Input. 58

STRREAD ... 58

Chapter 7: Registers

Introduction 59
[/O System Registers 59
IOSTATUS Function. 59
Examples 59
IOCONTROL Proceduret 60
Examples 60
Common Register Definitions 60
Hardware Registers 60

Chapter 8: Errors and Timeouts

Introduction 61
Pascal Event Processing 62
TRY 62
RECOVER. 63
ESCAPECODE 63
ESCAPE. . . . 63
VO ErorHandling. 63
IOESCAPECODKE. . . . 63
IOE_RESULT ... 63
IO IS . . 64
IOERROR_MESSAGE 64
VOTimeouts i, e 65
Setting Up Timeout Events 65
VO Errors ..o 67

Chapter 9: Advanced Transfer Techniques

Introduction 69
Buffers. . .. 69
Buffer Control 70
ReadingBufferData............. 70
Writing Buffer Data. 71
Serial Transfers 72
Overlap Transfers 74
When Is the Transfer Finished? 74
Special Transfers 76
Word Transfer. 76
Match Character Transfer. 76

vi

Chapter 10: HP-IB Interface

Introduction 77
Initial Installation 78
Communicating with Devices. 79
HP-IB Device Selectors 79
Moving Data Throughthe HP-IB 79
General Structure of the HP-IB. 79
Examples of Bus Sequences 81
Addressing Multiple Listeners 82
Addressing a Non-Active Controller 82
Pascal Control of HP-IB 83
HP-IB Status 83
HP-IB Control 83
General Bus Management 84
Remote Control of Devices 84
Locking Out Local Control 85
Enabling Local Control. 85
Triggering HP-IB Devices. 86
Clearing HP-IB Devices 86
Aborting Bus ActiVity 86
Passing Control 87
Polling HP-IB Devices 87
HP-IB Interface Conditions. 89
HP-IB Control Lines 90
Handshake Lines. 90
Attention Line 91
The Interface Clear Line. 91
The Remote Enable Line 91
The End or I[dentify Line 91
The Service Request Line 92
Determining Bus Line States 92
Advanced Bus Management. 94
The Message CONCePtottt 94
Types of Bus Messages. 94
Explicit Bus MeSsages.o 98
Summary of HP-IB IOSTATUS and IOCONTROL Registers 99
Summary of HP-IB IOREAD_BYTE and IOWRITE_BYTE Registers. 103

Summary of Bus Sequences 113

vii

Chapter 11: Datacomm Interface

Introduction 117
Prerequisites 117
Protocol 118
Data Transfers Between Computer and Interface. 120

Overview of Datacomm Programming i 123
SetBaud Rate. 123
Set Stop Bits 123
Set Character Length 123
Set Parity 123
Example Terminal Emulator 124

Establishing the Connection. i 126
Determining Protocol and Link Operating Parameters. 126
Using Defaults to Simplify Programming 127
Resetting the Datacomm Interface 128
Protocol Selection. 128
Datacomm Options for Async Communication. 129
Datacomm Options for Data Link Communication. 133
Connectingtothe Line. i 135
Connection Procedure 136
Initiating the Connection 136

Datacomm Errors and Recovery Procedures 138
Error Recovery 139

Datacomm Programming Helps. 140

Terminal Prompt Messages i 140

Secondary Channel, Half-duplex Communication 142

Communication Between Desktop Computers 142

Cable and Adapter Options and Functions. 143
DCEand DTE Cable Options e 143
Optional Circuit Driver/Receiver Functions 144

HP 98628 Datacomm Interface IOSTATUS and IOCONTROL Register Summary. 145

HP 98628 Datacomm Interface IOSTATUS and IOCONTROL Registers 147

Chapter 12: RS-232 Serial Interface

Introduction 155
Details of Serial /O 156
Baud Rate 157
Signaland Control Lines 157
Software Handshake, Parity and Character Format.......................... ... 158
Programming Techniques. 159
Overview of Serial Interface Programming 159
Initializing the Connection 160
Transferring Data 162
Data Output. 162
Datalnput 163

Error Detectionand Handling 163

viii

Special Applications 165
Sending BREAK Messages 165
Redefining Handshake and Special characters 165
Using the Modem Line Control Registers. 166
IOREAD_BYTE and IOWRITE_BYTE Register Operations. 168

Status and Control Registers 169

Serial Interface Hardware Registers. 173
Interface Card Registers. 173
UART Regdisters. PP 174

Cable Options and Signal Functions. 177
The DTE Cable. 177
The DCE Cable. 178

HP 98644 Interface Differences. 181
Hardware Differences. 181
Pascal Differences. 183

Model 216 and 217 Built-In Interface Differences. 184
Hardware Differences. 184
Pascal Differences. 184

Chapter 13: GPIO Interface

Introduction 185
Interface Description 186
Interface Configuration. 187
Interface Select Code e 187
Hardware Interrupt Priority 187
Data Logic Sense 187
Data Handshake Methods 187
Interface Reset 198
Outputs and Inputs through the GPIO, 199
ASCII and Internal Representations 199
Using the Special-Purpose Lines 202
Driving the Control Output Lines 202
Interrogating the Status Input Lines 202
GPIO Status and Control Registers. 204
Summary of GPIO IOREAD_BYTE and IOWRITE_BYTE Registers 205
GPIO IOREAD_BYTE Registers 205

GPIO IOWRITE_BYTE Registers 207

Chapter 14: System Devices

INtrodUcCHON 209
Supported Featurest 210
The SYSDEVS Module 211
The Example Programs 211

Interrupt Processing Overview i 213
Hooking into Your System 213
Enabling Interrupts 215
System Features 216

The Beeper 217
Beeper TIming. 217

The ClocK.o 219
Direct Clock ACCESS . . . o oottt e e e e e 222

The Timers. . ..o 224
Timer Types. 225
Timer Operationst 225
Usinga Timer 226
ATypical Timer ISR 227
Multi-Timer Example 228
Using the Periodic Timer i 230
System Timer Example 232

The Display 234
Determining Display Typeo 234
Display Statesooii i 235
Display Parameters. 236
Changing Display Parameters i 237
Controllingthe Cursor 238
Dumping the Display 238
The Last Line 240
The Menus. 242
The Status Area. 243
The Runlight 244
The Debugger Window 245

The Keyboard 250
The Keyboard HOOKSo 251
Keyboard Request Hook 251
Keyboard ISR HOOK. 253
Keyboard Poll HooK. 254

The Keybuffer 256
Keybuffer Control. 257
Keybuffer IO Hooks 257

Key Translation Services. 259
The Translation Hook 259
Modifying the Language Table i 262

The Knob 264

Keyboard Hardware 266
Key-ACHONSo 270

Typing Aids Program 273

ix

Powerfail. 282

Battery Features 282
Powerfail Behavior 283
Powerfail Real-Time Clock 283
Non-Volatile RAM. 284
Interface to the Host CPU 284
Commands to the Battery 285
SYSDEVS LiStingo 288

Chapter 15: Segmentation Procedures

Introduction 295
AWordtothe Wise 295
Using SEGMENTER Procedures. i i ... 296
SEGMENTER Procedure Descriptions 297
SEGMENTER Initialization 297
Segmentation Free Space 297
Segmentation Using the Stack. 297
Searching for a Procedure Name 300
Checking a Procedure Variable. 300
Loading into the Explicit Code Area. 301
Loading a Segment ontothe Heap. 302
Unloadinga Segment. 303
Unloading All Segments. 303
SEGMENTER Errors.o 304

Procedure Library Summary

VO Procedures 305
Graphics Procedures. 306
Procedure Library Reference........... 307
Introduction 307

Glossary 527

Chapter

1

Overview

Introduction

This manual describes the procedures, functions, constants, and types provided by the Pascal
Procedure Library. It also presents several examples of how to use them in Pascal programs.

The manual is divided into two major parts.
® The first part (Chapters 1 thru 15) is organized by topics. It explains particular programming
concepts rather than individual procedures and functions.

® The second part (the Library Reference) is an alphabetical listing of the individual procedures
and functions, showing syntax and semantic information for each.

Prerequisites

In order to successfully use this manual, you must understand the concept of modules. This chapter
provides an overview of modules. (It is essentially a duplication of the first seven pages of the
Librarian chapter in the Pascal Workstation System manual.) For a more complete description of
modules, read the Modules section of the Compiler chapter in the Pascal Workstation System
manual (about 10 pages of text).

Chapter Overview
The remainder of this chapter contains these sections:

® A preview of each remaining chapter in this manual.

® A general overview of using library modules.

® A description of the modules provided by the Procedure Library.
® Recommendations for building your library.

2 Overview

Chapter Previews

Here are brief descriptions of the rest of the chapters in this manual. There are also recommenda-
tions as to which you may need to read.

Chapter 2: Interfacing Concepts This chapter presents a brief explanation of relevant interfacing
concepts and terminology. This discussion is especially useful for beginning I/O programmers, as it
covers much of the why and how of interfacing. Experienced programmers may also want to skim
this material to better understand the terminology used in this manual.

Chapter 3: /O Procedure Library This chapter presents an introduction to the I/O Procedure
Library. It describes the organization of the I/O library, its major capabilities, and examples of its
use. All I/O programmers should read this chapter.

Chapter 4: Directing Data Flow This chapter describes how to specify which computer resource
is to receive data from or send data to the computer by using select codes and device selectors.

Chapter 5: Data Input This chapter desribes methods of sending data to devices. Examples of
free-field and formatted output are given. You may be able to skip sections of this chapter,
depending on your application.

Chapter 6: Data Output This chapter desribes methods of receiving data from devices. Examples
of free-field and formatted input are given. As with the preceding chapter, you may be able to skip
sections of this chapter, depending on your application.

Chapter 7: Registers This chapter describes the purposes of interface registers and how to use
them. Both the hardware and firmware registers are described in general. Specific interface register
definitions are given in the corresponding chapter.

Chapter 8: Errors and Timeouts This chapter describes what you need to do in order to handle
and recover from error and timeout conditions.

Chapter 9: Advanced Transfer Techniques This chapter discusses the high-performance transfer
methods provided in the /O library. These methods use “‘buffered” transfer mechanisms; they
include interrupt, fast-handshake, and direct-memory access (DMA) transfer methods.

Chapter 10: HP-IB Interface This chapter describes programming techniques specific to HP-IB
interfaces. Details of HP-IB communications processes are also included to promote better overall
uinderstanding of how this interface may be used. This discussion is valid for the built-in HP-IB
interface, as well as for the optional HP 98624 HP-IB and 98625 High-Speed Disc interfaces.

Chapter 11: Data Communications Interface This chapter describes programming techniques
specific to the HP 98628 Data Communications (or ‘‘Datacomm’) interface.

Chapter 12: RS-232C Serial Interface This chapter is a programming techniques discussion of
the HP 98626 and 98644 RS-232C Serial interfaces.

Chapter 13: GPIO Interface This chapter describes techniques specific to programming the HP
98622 General-Purpose Input/Output (GPIO) interface.

Overview 3

Chapter 14: System Devices This chapter describes using the operating system module named
SYSDEVS to access the built-in “‘system devices’’ such as the keyboard, display, clock, and beeper;
it also describes how to access optional devices such as powerfail protection.

Chapter 15: Segmentation Procedures This chapter describes the procedures that provide the
capability of segmenting programs at run-time.

Overview of Libraries and Modules

This section presents some important terms and concepts you will need to know in order to
understand and use modules, and discusses how to use some general example modules. The
subsequent section describes the modules provided in the Pascal Procedure Library.

Modules and Libraries

Modules declare procedures, functions, constants, and types. Once these objects have been de-
clared, you can use them in your programs by importing them. (You will see examples momen-
tarily.)

Libraries are object files. They contain zero or more object modules. Object modules are the
product of the Compiler or Assembler’. For instance, compiling a Pascal source module generates
an object module which is placed in an object file. This file is actually a library, because it contains
an object module. An object file (library) is composed of a directory of names of the module(s) that
it contains, followed by the object modules themselves.

The Librarian

The purpose of the Librarian subsystem is to manage object modules. The Librarian can also
produce object files; however, these files consist of object modules produced by the Compiler or
Assembler. It can create library files and add modules to them or remove modules from them.
Library files are intended to provide a convenient location to store object modules.

Example Modules

For this example, we will be using three example library modules provided on the DOC: disc
shipped with your system. One contains a compiled program (PROG_1.CODE), and the other two
contain compiled modules (MOD_2.CODE and MOD_3.CODE).

The DOC: disc also contains the source versions of these modules. Although this chapter will only
be dealing specifically with the object versions, it is a good learning experience to compile the
source versions to see how the Compiler deals with imported modules. One method is briefly
outlined in the next section.

1 Complete descriptions of how to produce and use Pascal and Assembler modules are provided in the Compiler and Assembler chapters of the
Pascal Workstation System manual.

4 Overview

Here are source listings and brief explanations of each of the example modules.

Source Listing of PROG_1.CODE

PROGRAM ProdramOne(QUTPUT) 3
IMPORT ModuleTwos

BEGIN
WRITELN
WRITELNS
WRITELNC 7 # %% %% %% %% %%%%%% ProdramOrie *¥¥¥XXEXEXXKX%%7)]
TwolLimess
WRITELNC “#%¥%%% %% %% %%%%%% ProdramOne *¥F¥XXEXEEXXX%%7))

END.

The example program imports ModuleTwo, which declared the procedure named TwoLines. Here

is the source of ModuleTwo, which was compiled and stored in the library (object-code) file named
MOD_2.CODE.

Source Listing of MOD_2.CODE

MODULE ModuleTwosd
IMPORT ModuleThrees

EXPORT
PROCEDURE Twoliness

IMPLEMENT

PROCEDURE Twoliness
BEGIN
WRITELN(’I came from ModuleTwo and broudht this:)3
ThirdlLines
END 3

END.

Overview

ModuleTwo exports procedure Twolines, which is used by ProgramOne. It also imports

ModuleThree, which declares procedure ThirdLine and is in the library (object-code) file named
MOD_3.CODE.

Source Listing of MOD_3.CODE

MODULE ModuleThrees

APORT
PROCEDURE ThirdLines

IMPLEMENT
PROCEDURE ThirdLines
BEGIN
WRITELN('I came from ModuleThree’)s
END 4

END.

This module exports procedure ThirdLine, which is imported by ModuleTwo. Notice that it does
not import any modules.

Here are the results of running the program.

FERERRERNRNRNEE ProgdramOne #E¥XEXRERRFERES
I came from ModuleTwo and broudght this:

I came from ModuleThree
FERRERXRXRNRNEN ProdramOrie #EEEREEERERREER

Here is what happens when you run ProgramOne. First, ProgramOne prints two blank lines and
then the line of asterisks that contains its name. The procedure TwolLines, imported from
ModuleTwo, is then called; it prints the message: I came from ModuleTwo and brought this:.
Procedure ThirdLine, imported from ModuleThree, is then called; it prints the message:
I came from ModuleThree. Control is then returned to TwoLines and then to the program, which
again prints out its name in asterisks.

Let’s take a look at what is needed in order for you to compile and run the program.

6 Overview

Compiling and Running the Example Program

When a program (or module) imports modules, the imported modules must be accessible at two
times:

® When the program is compiled.
® When the program is loaded and run.

Let's take a look at what happens at these two times.

How the Compiler Finds Imported Modules

At compile time, the Compiler searches for each module imported by the source program (or
module); more specifically, it searches to find each module’s ‘“‘interface text.”” Here is the order of
the places where the Compiler looks in search of interface text:

1. In the source text being compiled. (The source text of modules and programs can be
combined into one source file, as long as the modules precede the program and are in proper
sequence.)

2. In an object file specified in a SEARCH Compiler option.
3. In the object file currently designated as the System Library.

A module’s interface text consists of the following: the MODULE name; the IMPORT section, if
present; and EXPORT section. These sections are part of the object module produced when the
module was compiled or assembled. See the Compiler or Assembler chapters of the Pascal Work-
station System manual for a more complete description of interface text.

The System Library is a special library file that is automatically used by the system. The default
System Library is the file named “LIBRARY” found on the system volume at power-up. You can
also change it with the What command and the Main Command Level.

How these Modules and Program Were Compiled

Here is a strategy (and the method actually used) for compiling these source modules and program.
(Note that you will be learning these Librarian operations later in this section, so you will probably
not want to perform this compilation exercise until after working through the examples using the
object modules and program.)

1. Compile ModuleThree first (MOD_3.TEXT); call it MOD_3.CODE for simplicity. Since this
module does not import any others, it will be compiled with no need to search for any
imported module’s interface text.

2. Use the Librarian to add the resultant object module (MOD_3.CODE) to the library file
currently designated as the System Library. (Actually, you will be creating a new library into
which you will place ModuleThree and the modules currently in the System Library; this type
of operation is subsequently explained in this chapter.)

3. After merging these two libraries (into a third new library), you will need to do one of two
things: use the What command to make the resultant library the System Library; or use the
Filer to change the resultant library’s name back to the name of the current System Library.

4. Next, compile ModuleTwo (MOD_2. TEXT); call it MOD_2.CODE. The external references
to ModuleThree will be resolved when the Compiler finds the object ModuleThree in the
System Library.

Overview 7

5. Then place this compiled module in the System Library as in steps 2 and 3.

6. Compile the program (PROG_1.TEXT). Since both object modules upon which this prog-
ram depends are in the System Library, they will be accessed automatically by the Compiler
when the program is compiled.

7. Run the program. The loader automatically looks in the System Library in order to resolve
the external references; it loads the modules required to complete the program (in this case,
ModuleTwo and ModuleThree).

Since the program and modules have already been compiled and the object files placed on the
DOC: disc, we will not discuss other alternatives of making the source files accessible to the
Compiler. (However, you are again encouraged to do this after learning how to use the Librarian.
See the Compiler chapter of the Pascal Workstation System manual for details.)

Let’s look now at how the loader finds imported object modules when the program is to be loaded
for execution.

How the Loader Finds Imported Modules

Since a compiled program contains no record of where the Compiler found the imported modules,
the loader must (by itself) find the imported object modules at load time. Here is the order of the
places where the loader looks:

1. Modules that are part of the object file being loaded.

2. In modules already P-loaded in memory, which includes all INITLIB and Operating System
modules. (The loader searches for these modules in reverse order to which they were
P-loaded; in other words, the most-recently loaded modules are searched first.)

3. In the current System Library file.

In order to make all imported modules part of the object file that uses them (alternative 1 shown
above), you have two choices:

e Combine the source modules into one source file (and compile it). You can use the Editor to
add each imported module’s source file to the source program. You can also use an INCLUDE
Compiler option in the source program to include each imported module’s source file in the
compilation of the program.

e Combine the object modules into one object file. Use the Librarian to combine the program
and imported modules into one object file; you can optionally Link the modules to save space.

With both of these methods, only the file containing the program need be loaded; and when the
program is finished, the memory used by the modules can be reclaimed for other purposes. With
P-loaded modules, this is not possible (without re-booting).

If you want to P-load modules to make them accessible to the loader (alternative 2 shown above),
you will only need to P-load all modules which are not in one of the three places stated above. In
the example modules already given, ProgramOne imports ModuleTwo, and ModuleTwo imports
ModuleThree. In the second example that follows, you will be creating a library that contains these
two modules and then P-loading the library. (You can alternatively P-load MOD_3.CODE and
MOD_2.CODE, in that order, which does not require use of the Librarian.) The loader will then be
able to link the modules contained in the library to any program that imports them at execution
time.

8 Overview

In general, the most convenient way to use modules is to place them in the file that is currently
designated as the ““System Library” (alternative 3 shown above). This is probably the most com-
mon reason for using the Librarian. In the example that follows, you will add modules ModuleTwo
and ModuleThree to the LIBRARY file and then run the program.

Setting Up Mass Storage

With some larger applications, you will need two on-line mass storage volumes when using the
Librarian. If you only have one volume in your system, you may need to set up a memory volume.
This discusson tells why two volumes may be needed and then outlines how to estimate the size of
the volumes required.

When you combine the object modules in two libraries using the Librarian, you actually create a
third (new) library and then copy into it the desired modules from the other two libraries. For
instance, suppose that you want to add all of the CONFIG:GRAPHICS modules to the
SYSVOL:LIBRARY file. You will first create a new library file, and then add the existing LIBRARY
modules and the GRAPHICS modules to this new library. The volume on which this new library
exists must not be taken off-line during the entire process.

Thus, two separate volumes are often necessary for these two reasons:
® The sum of all source libraries plus the new destination library often exceeds the capacity of
one volume.

® The destination volume must not be taken off-line during this entire operation.

Continuing with our example, here is the total amount of space of on-line mass storage required for
the operation (assuming you have only one disc drive).

® All modules in the standard LIBRARY file: approximately 64 sectors
® All modules in the standard GRAPHICS file: approximately 808 sectors
® The new library file: roughly the sum of 64 and 808 sectors

The grand total is over 1740 sectors (over 446 Kbytes). If you only have one mini disc drive with
capacity of about 1050 sectors (about 270 Kbytes), then you will need two volumes for the process;
the second volume will be a memory volume.

In this case, you could create a memory volume with a specified size of 500 blocks, or 250 Kbytes.
(Note that memory volume blocks are 512 bytes each, while mini-disc sectors are 256 bytes each.
See the Memvol command in the Overview chapter for more specific details on creating memory
volumes.)

It is usually more convenient to use the memory volume as the destination volume, since that
volume cannot be taken off-line.

The following examples assume that either you have two disc volumes on-line or that you have
created a memory volume of sufficient size. For these examples, a memory volume of 500 blocks is
sufficient.

Overview 9

Using the Librarian

The Librarian is provided on the ACCESS: disc shipped with the system. To use the Librarian, you
will first need to put it on-line: either place the disc labeled ACCESS: in a drive, or copy the
LIBRARIAN file to another location (such as a hard disc) and use the What command (at the Main

Command Level) to specify this copy as the system Librarian. After doing either of these, pressing
directs the system to load and execute the LIBRARIAN file.

Here is the Librarian’s main prompt:

1
Librarian [Revw, 3.0 15-Arr-841] 1-Mav-84 B:11:58
G Quit
P Printout OFF PRINTER:LINK.ASC
0 Dutput file: (none)
B write to Boot disk
H file Header maximum size: 38
I Imput file: (none)
Copvyright 1984 Hewlett-Packard Companvy,
command?
_ Y,

The commands shown on the left-hand side of the screen are invoked by pressing the correspond-
ing key.

Adding Modules to the System Library

A common way to use library modules is to add them to the current System Library file. Let’s
assume that it is the file named LIBRARY for present purposes, although you can change it to any
file by using the What command at the Main Command Level. The general steps in the procedure
used to add modules to LIBRARY are the same as those used to add modules to almost any library.

Here is a brief summary of the steps required:

1. Make a new library file, and copy into it all of the modules currently in LIBRARY.

2. Add ModuleThree and ModuleTwo to the new file (in this case the order of modules is
arbitrary, since the loader will load them in the right order).

3. Replace the LIBRARY file with this new file.
4. Execute the program, and the modules are loaded automatically for you.

10 Overview

A more detailed procedure is given below.

1.

10.

Invoke the Librarian. This is done by pressing from the Main Command Level. (If the
Librarian is not on-line, insert the ACCESS: disc and try again. Remove the ACCESS: disc
once the Librarian has loaded.) Now use the Librarian to create the new library.

Put the SYSVOL.: disc (or the one containing the LIBRARY file) in the #3 drive. Press (1)
and then type #3:L1BRARY, and press (Retum) or (ENTER) to enter the Input file. You must
include a trailing period to prevent the Librarian from appending the . CODE suffix.

When the Librarian finds the Input file, the display will show the name of the first module in
the file. (You should see the module named RND if you have not yet modified the LIBRARY
file.) If you have a printer, you can press to list all of the modules in the Input library.

(For this example, we will assume that you are using unit #4 as the second volume;
however, if the LIBRARY file is small enough, you can also put the new library file on drive
#3. We will also assume that the destination volume has enough room for the new library
file.)

Press (0) and enter #4:NEWLIB. as the Output file. Again. a trailing period prevents the
,CODE suffix from being appended to the file name. If you are using a memory volume, use
the unit number of the memory volume.

(If you are using a disc, this disc must not be removed until you have finished creating the
new NEWLIB file.)

Press (_E) to enter the Edit mode. You should now see this prompt (in the middle of the
screen):

F First module: RND
U Until module: (ewnd of file)

You can now transfer all modules in the Input file to the Output file, including the last
module, by pressing (for Copy).

When the preceding transfer is complete. press (_A) to append a module to the NEWLIB
Output file. The Librarian prompts with Irrut file:. Put the DOC: disc, or whichever disc
now contains ModuleThree, in Unit #3 (not #4, which must not be removed). Enter
#3:M0D_3 as the Input file.

The Librarian now prompts with Enter list of modules or = for all. Enter = for all.
After ModuleThree has been transferred to the NEWLIB library, the Librarian prompts with
Arpend dones <space: to cantinue. Press the spacebar to clear the prompt.

Now use steps 6 and 7 again to copy ModuleTwo (in file MOD_2.CODE) into the NEWLIB
file.
Now that all modules have been added to the NEWLIB file, press (_§) to stop editing and

(K) to keep the file.

You should now verify that the modules were indeed copied to the Output file. Press (1)
and enter #4:NEWLIB, as the Input file. Press the spacebar repeatedly to scan through the
modules in the new library file. If you have a printer, press (_F_) to get a File Directory
listing.

If all modules are present, then press (_Q) to Quit the Librarian.

Overview 11

11. Now you have one of two options to make this library the System Library: you can use the
What command at the Main Level to specify the file named NEWLIB (on the destination
volume) to be the System Library; or you can replace the LIBRARY file on the SYSVOL.:
disc with this file. If you choose the second option, it is probably better to keep the current
copy of LIBRARY on the disc; you should first Change its name to something like OLDLIB
and then Filecopy the NEWLIB file onto the SYSVOL.: disc, changing its name to LIBRARY.

12. Make sure that the System Library file is on-line, and then eXecute or Run the program.

As the program is loaded, the imported modules will also be loaded automatically. Here are the
results of running the program.

FEEERRXFXRXRX%% ProgramOne *EFEXXXEXERERER
I came from ModuleTwo and broudht this:

I came from ModuleThree

EEREREERRRAEX%% ProgdramOne *#¥F¥E e eRe4%%

After the program has completed execution, the memory used by both program and modules can
be used for other purposes.

As you can see, the System Library is a special library of object modules that is automatically
accessed by the linking loader at program execution time (and by the Compiler at compile time).
Because of this automatic access, you do not need to use the Permanent-load command to make
this library’s contents accessible to the loader. And also because of this automatic access, the
System Library is generally used to store those modules often used in your programs.

Using modules in the Procedure Library is similar to using these example modules. Now that you
know how to use modules, let’s look at the specific library files and modules provided with your
system.

12 Overview

Overview of the Procedure Library

The modules supplied with the Pascal system provide the following general categories of proce-
dures:

® Standard procedures

@ [/O procedures

® Graphics procedures

® Segmentation procedures

Standard LIBRARY Modules

The SYSVOL:LIBRARY file contains the ‘“‘standard’ library modules. It is a small collection of
modules which contain general support procedures and functions for your programs. It has been
made small in order to conserve disc space; however, you can easily add modules to it.

The following modules are contained in the standard LIBRARY file; using each module is described
momentarily. (The listing was generated by using the Librarian’s "File directory’ command).

Librarian [Rev. 3.0 15-Arr-841] 30-Apr-84 12: 0:48 pade 1

FILE DIRECTORY OF: ‘LIBRARY’

1 RND 6 15-Apr-84 3
2 HPM 8 15-Apr-84 g
3 uIo 7 15-APr-84 17
4 LOCKMODULE 7 13-Apr-84 24

The first column indicates the ordinal number of the module; for instance, UIO is the third module
in this library file. (The second column shows the module’s name.)

The third column indicates the size of the module (in 256-byte sectors).
The fourth column indicates the date the module was produced.

The fifth column shows the sector offset. RND has an offset of 3; since it has a size of 6 sectors,
HPM has an offset of 9 sectors.

Using RND

Module RND must be imported when you use the random number generator. The random number
generator is described in the Library Reference section of this manual under the entries RAND (a
function) and RANDOM (a procedure).

As with most other modules, RND must be accessible at two times: when compiling and when
running programs that import it. If it is in the System Library file at compile time and at run time,
then it will be accessed automatically; see the preceding discussions of how the Compiler and
loader find modules for the other alternatives.

Overview 13

In addition, RND imports the SYSGLOBALS module. This module was effectively P-loaded at
boot time (it is part of the standard INITLIB file), so you will not need to do anything to make it
accessible to the loader. However, the Compiler still needs to search the module’s interface text, so
you will need to make the interface text accessible to the Compiler. The interface text is in the
CONFIG:INTERFACE file, and you can make it accessible in either of two ways: use a SEARCH
Compiler option in your program, or add the SYSGLOBALS module to the current System Library
file.

Using HPM

Module HPM provides the DISPOSE, NEW, MARK, and RELEASE procedures for managing
dynamic variables in the heap. Techniques for using these procedures are described in the Heap
Management section of the Compiler chapter of the Pascal Workstation System manual. Precise
descriptions of syntax and semantics for the procedures is in the HP Pascal Language Reference for
Series 200 Computers.

The HPM module needs never be imported, because its procedures are ““Compiler intrinsics;”” thus,
it does not need to be accessible to the Compiler while compiling programs that use its procedures.
However, it needs to be accessible to the loader at run time if you are using the $HEAP_DISPOSE
ON$ Compiler option. In order to make it accessible to the loader, you can do one of three things:
combine the object module with the object program (or module) that imports it; P-load the module;
or add it to the current System Library.

For further details regarding the use of the HEAP_DISPOSE Compiler option, see the Compiler
chapter of the Pascal Workstation System manual.

Using UIO

Module UIO provides the low-level “‘unit /O capabilities: UNITBUSY, UNITCLEAR, UNITREAD,
UNITWAIT, and UNITWRITE. With these utility procedures and functions, you can read and write
data on sectors of blocked devices which have been assigned unit numbers in the File System. For
further details on these Unit [/O operations, see the Workstation Implementation section of the HP
Pascal Language Reference for Series 200 Computers.

The UIO module need never be imported, because it is a “‘Compiler intrinsic;” thus, it does not
need to be accessible to the Compiler while compiling programs that use its procedures and
functions. However, it does need to be accessible to the loader at run time. You can do one of three
things: combine the object module with the object program (or module) that imports it; P-load the
module; or add it to the current System Library.

Using LOCKMODULE

LOCKMODULE provides locking capabilities for 'lockable’ files. File locking operations are de-
scribed in the SRM Concurrent File Access section of the File System chapter in the Pascal
Workstation System manual.

LOCKMODULE must be imported if you use the file locking operations on LOCKABLE files. As
with most other modules, it must be accessible at two times: when compiling and when running
programs that import it. If it is in the System Library file at compile time and at run time, then it will
be accessed automatically; see the preceding discussions of how the Compiler and loader find
modules for the other alternatives.

14 Overview

The 10 Modules

The file named IO on the LIB: disc contains modules that provide I/O procedures and functions.
The bulk of this manual describes using the 10 library. The Library Reference section of this manual
lists the module(s) you must IMPORT for each procedure and function.

If you are using I/O procedures and functions in your programs, then the modules which declare
those procedures and functions must be accessible to the Compiler and loader. If the modules are
in the System Library, then they will automatically be accessed; for alternative methods of making
them accessible, see the beginning of this chapter.

The modules contained in IO are shown in the following 'File directory’ listing generated by the
Librarian.

Librarian [Reu., 3.0 15-Apr-841 30-Apr-84 11:52:17 pade |

FILE DIRECTORY OF: ‘IO’

1 IODECLARATIONS 17 15-Apr-84 1
2 GENERAL.OQ 3 15-Apr-84 18
3 IOLIBRARY_KERNE 1 15-Arr-84 21
4 TOCOMASM 3 15-Arr-84 22
5 GENERAL-1 B 15-Arr-B4 25
6 HPIB_1 10 15-Arr-B4 33
7 GENERAL_Z 10 15-Arr-84 43
8 GENERAL_3 g 15-Apr-84 53
9 GENERAL.4 14 15-Arr-B84 B2
10 HPIB_O B 15-Arr-84 76
11 HPIB_2 9 15-Arr-84 82
12 HPIB_3 8 15-Arr-84 91
13 SERIAL_O 9 15-Arr-B4 99
14 SERIAL_Z 11 15-Arr-84 108
The INTERFACE Modules

The INTERFACE file on the CONFIG: disc contains modules comprised of only the interface text of
several operating system modules. (The interface text of a module consists of the MODULE name;
the IMPORT section, if present; and the EXPORT section. It is used by the Compiler when
compiling programs that depend on the module.) The INTERFACE file is provided so that your
programs can import modules which in turn import these operating system modules (since the
interface text of operating system modules is not otherwise accessible).

For instance, the SYSGLOBALS module is imported by most of the IO modules; so when compil-
ing programs that import an 10 module, the SYSGLOBALS module’s interface text must be
accessible to the Compiler. To make it accessible to the Compiler, either add the module to the
System Library or specify the INTERFACE library file in a SEARCH Compiler option.

The modules contained in INTERFACE are as follows:

Librarian [Rev, 3,0 15-Apr-84] 30-Apr-84 11:33:49 pade 1
FILE DIRECTORY OF: ‘INTERFACE’
1 ASM 5 15-Arr-84 2
2 SYSGLOBALS 16 15-Apr-84 7
3 MINI 2 15-Apr-84 23
4 BOOTDAMMODULE 2 15-Apr-84 25
3 LOADER 14 15-Apr-84 27
B INITLOAD 1 15-Arr-B4 41
7 ISR 2 15-Arr-84 42
8 MISC 4 15-Apr-B4 44
89 FS 10 15-Apr-B4 48
10 INITUNITS 2 15-Apr-B84 58
11 LDR 2 15-Apr-84 GO
12 SETUPSYS 1 15-Apr-84 62
13 S5YSDEVS 15 15-Apr-84 B3
14 SYSDEVICES 1 15-Apr-84 78
15 ABOAXDUR 2 15-Apr-84 79
16 ABOAXINIT 1 15-Apr-84 B1
17 CI 4 15-Arr-84 82
18 CMD 1 15-Apr-84 BG
Note
From a technical standpoint, the availability of this interface text gives
you the ability to import these modules in your own programs. Howev-
er, from a practical standpoint, the only module described enough to
allow you to import it is the SYSDEVS module, which is discussed in the
Systern Devices chapter.
The GRAPHICS Modules

Overview 15

The GRAPHICS file on the LIB: disc contains modules that provide graphics procedures and
functions. The FGRAPHICS file on the FLTLIB: disc provides the same set of procedures and
functions, but they have been optimized for use with the HP 98635 Floating-Point Math card. (The
FGRAPHICS modules have been compiled with the $FLOAT_HDW TEST$ Compiler option,
which increases the performance of graphics routines by using the HP 98635 Floating-Point
Hardware card, if present. The GRAPHICS modules also use the card, if present, but the overhead
of calling the normal math library routines, which then test for the card, does not provide the
maximum performance.)

Graphics concepts and programming are explained in the Pascal Graphics Techniques manual.

16 Overview

The modules contained in GRAPHICS are as follows:

Litrarian [Rev, 3.0 15-Apr-84]

FILE

O B L 3o

o~ ol

9
10
11
12
13
14
15
16
17
iB8
19
20

21

20
.

23
24
25
26
27
28
29
30
31
32
33

If you

DIRECTORY OF: 'GRAPHICS’

GLE_AUTL
GLE_UTLS
GLE_TYPES
GLE_STROKE
GLE_STEXT
GLE_ASTEXT
GLE_SMARK
GLE_SCLIP
GLE_ASCLIP
GLE_FILE_IO
GLE_HPIB_IO
GLE_HPGL_OUT
GLE_HPGL_IN
GLE_RAS_OUT
GLE_ARAS_OUT
GLE_KNOB_IN
GLE_GEN
GLE_GENI
DGL_TYPES
DGL_VARS 17
DGL_IBODY 7
DGL_AUTL 7
DGL_TOOLS 6
DGL_GEN 21
DGL_RASTER i8
DGL_HPGL 11
DGL_CONFG_DUT 13
DGL_KNOB B
DGL_HPGLI 7
DGL_CONFG_IN 8
DGL_LIB 40
DGL._POLY 26
DGL_ING 14

3

o4 01~ 3 mom

[N R,
R S N]

H
LEI RN v RN S B s Lo w3 I N |

are using any of the graphics procedures and functions in your programs, then all
GRAPHICS modules through DGL_LIB (i.e., the first 31 of the preceding modules) must be
accessible at compile time and at load time. Module DGL_POLY is only needed if you use
procedures that work with polygons. Module DGL_INQ is only needed if you use the INQ_WS

procedure.

If the modules are in the System Library, they will be accessed automatically; for alternative

15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Apr-84
15-Arr-84
15-Arr-84
15-Apr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Arr-84
15-Apr-84
15-Arr-84
15-Apr-84
15-Arr-B4
15-Arr-84
15-Arr-84

30-Apr-84

3

9
17
39
46
33
39
66
71
78
85
98
118
130
146
167
176
189
195
200
217
224
231
237
258
276
287
300
308
315
323
363
389

11:35:57

page 1

methods of making these modules accessible, see the beginning of this chapter.

Overview 17

The SEGMENTER Module

The SEGMENTER file on the CONFIG: disc contains the SEGMENTER module that provides
procedures which allow you to dynamically (programmatically) load, execute, and unload program
segments. For instance, you can use these procedures to segment and run programs in a minimum
amount of memory; however, note that it sometimes requires some very clever programming to
accomplish this type of feat. Examples of these procedures are given in the Segmentation Proce-
dures chapter of this manual.

Here is a ’File directory’ listing of the SEGMENTER library file, produced by the Librarian.

Librarian [Rev, 3.0 153-Apr-841] 30-Apr-84 11:58: 2 pade 1
FILE DIRECTORY OF: ‘SEGMENTER’

1 ALLOCATE 5 15-Apr-84 1
2 SEGMENTER 11 15-Arr-B4 B

Module SEGMENTER must be imported in order to use the segmentation procedures. Module
ALLOCATE is only the initialization program for module SEGMENTER, so you will not be import-
ing it.

As with importing most other modules, SEGMENTER must be accessible at two times: when
compiling and when running programs that import it. If it is in the System Library file at compile
time and at run time, then it will be accessed automatically; see the beginning of this chapter for
alternative methods of making it accessible.

18 Overview

Building Your Own Library

In general, placing modules in the System Library is the simplest way of making modules accessible
to the Compiler and loader. This section gives both general and specific recommendations about
adding modules to this file. This is the primary method of using modules that is described in this
section. Other methods (such as adding object modules to an object program’s file) were described
in the beginning of this chapter and in the Compiler chapter of the Pascal Workstation System
manual.

General Recommendations

Only a few modules have been placed in the standard LIBRARY file in order to conserve disc
space. You will probably want to add to it the modules you will be using.

If You Have Large Mass Storage Volumes

If you have a mass storage volume with sufficient capacity (such as a hard disc, an SRM system, or a
dual-sided micro floppy), then you should add to the LIBRARY all the modules in 10, GRAPHICS,
and INTERFACE. That way you will never have to worry about whether or not any module is
accessible.

If You Have Smaller Volumes

If you are using a 5.25-inch disc (with 270-Kbyte capacity) as the system volume, then all of the
modules in the LIBRARY, [0, GRAPHICS, and INTERFACE files will not fit on your disc. Howev-
er, this should only be a problem if you are using both GRAPHICS and IO modules. (The
LIBRARY, IO, and INTERFACE files will easily fit on one disc). More specific recommendations
follow.

Specific Recommendations

If you really want to conserve space, you should add to the System Library file only the modules
you need to import in order to use procedures in programs and modules. Here are the steps you
will be taking:

1. Make a list of the procedures you will be using.

2. Make a list of the modules that need to be imported in order to use these procedures. You
will find this information in the Procedure Library Reference description of each procedure
(at the back of this manual).

3. Make a list of the modules upon which the imported modules depend. You will find this
information in the following Module Dependency Table. For instance, most Procedure Lib-
rary modules depend on the SYSGLOBALS (Operating System) module.

If possible, you should use an alternate method of accessing the modules upon which the
imported modules depend; for example, use a SEARCH Compiler option to make the
interface text of the SYSGLOBALS module accessible to the Compiler.

4. Create a new System Library file, and add to it only the necessary modules.

Here are specific recommendations for how to make modules from each of the files in the Proce-
dure Library accessible to the Compiler or loader.

Overview 19

Making INTERFACE Modules Accessible

You can save quite a bit of disc space by not adding the INTERFACE modules to your System
Library. Since INTERFACE modules are only used by the Compiler, you can make them accessible
by merely specifying the INTERFACE file in a SEARCH Compiler option.

Making LIBRARY Modules Accessible
You can remove the module(s) that you are not using from the standard LIBRARY file.

If you will be using the standard LIBRARY modules named RND or LOCKMODULE, then module
SYSGLOBALS must also be accessible; again, you can use a SEARCH Compiler option to tell the
Compiler where to look for the module’s interface text.

Making IO Modules Accessible

If you are using any IO modules, then you should have in your System Library only the following
modules: IODECLARATIONS; the modules that must be imported in order to use procedures you
have chosen; and any IO modules upon which the imported modules depend.

For instance, if you will be using the READSTRING procedure, then you will need to import the
GENERAL_2 module (see the Library Reference entry for this procedure). You will also need
IODECLARATIONS, and modules GENERAL_1 and HPIB_1 in the System Library (see the
Module Dependency Table). Module SYSGLOBALS can be found by specifying the INTERFACE
file in a SEARCH Compiler option.

Making GRAPHICS Modules Accessible

If you are using any graphics procedures, then you must have all GRAPHICS modules through
DGL_LIB (i.e., the first 31 modules in the GRAPHICS file) in the System Library. The only
modules that you can remove are DGL_POLY and DGL_INQ); the former is only required if you
will be using polygon graphics procedures, and the latter if using the INQ_WS procedure. The
INTERFACE modules, such as SYSGLOBALS and SYSDEVS, are not required at compile time.

Making SEGMENTER Modules Accessible
If you are using segmentation procedures, then you must have both the ALLOCATE and the
SEGMENTER modules in the System Library.

20 Overview

Module Dependency Table

The Module Dependency Table shows which modules are imported by the standard LIBRARY, 1O,
GRAPHICS, and SEGMENTER modules.

Module to Module(s) Upon
Be Imported Which It Depends
LIBRARY Modules:
RND SYSGLOBALS
HPM -
0)(0) —
LOCKMODULE SYSGLOBALS
[O Modules:
IODECLARATIONS SYSGLOBALS
IOCOMASM SYSGLOBALS, IODECILARATIONS
GENERAL_O SYSGLOBALS, IODECLARATIONS
GENERAL_1 SYSGLOBALS, IODECLARATIONS
GENERAL_2 SYSGLOBALS, IODECLARATIONS. GENERAL_1, HPIB_1
GENERAL_3 SYSGLOBALS, IODECLARATIONS
GENERAL_4 SYSGLOBALS, [ODECLARATIONS, HPIB_1
HPIB_0 SYSGLOBALS, I[ODECLARATIONS
HPIB_1 SYSGLOBALS. IODECLARATIONS
HPIB_2 SYSGLOBALS. IODECLARATIONS, HPIB_0, HPIB_1
HPIB_3 SYSGLOBALS, IODECLARATIONS. GENERAL_1. HPIB_0, HPIB_1
SERIAL_0O SYSGLOBALS. IODECLARATIONS
SERIAL_3 SYSGLOBALS. [ODECLARATIONS

GRAPHICS (and FGRAPHICS) Modules:

DGL_LIB ASM, IODECLARATIONS, SYSGLOBALS, MINI, ISR, MISC, FS,
SYSDEVS, and all GRAPHICS modules except DGL_INQ and
DGL_POLY

DGL_POLY SYSGLOBALS, SYSDEVS, and all GRAPHICS modules except
DGL_INQ

DGL_INQ ASM, SYSGLOBALS. A804XDVR, DGL_TYPES, DGL_VARS,

DGL_GEN, GLE_TYPES. GLE_GEN

SEGMENTER Modules:

SEGMENTER LOADER, LDR, SYSGLOBALS, MISC

Some Are Needed at Compile Time, Some Aren’t

From the table, you can see that several Procedure Library modules depend upon various Operat-
ing System modules (such as SYSGLOBALS, IODECLARATIONS, SYSDEVS, and A804XDVR).
However, the table does not show that some of the Procedure Library modules need these
Operating System module(s) only at load time and not at compile time (some also need them at
both times).

Modules such as SYSGLOBALS, SYSDEVS, and A8B04XDVR are part of the Operating System
that is automatically loaded during the booting process (because they are in the standard INITLIB
file.) Thus, you don’t ever need to be concerned about making them accessible to the loader
(unless you somehow remove them from the INITLIB file).

e The GRAPHICS and FGRAPHICS modules require the specified Operating System modules
only at load time (not at compile time).

e The LIBRARY. 10, and SEGMENTER modules require the specified modules at both compile
time and at load time. You can make these Operating System modules accessible to the
Compiler by specifying the INTERFACE file in a SEARCH Compiler option or by adding them
to the System Library.

21

Chapter

2

Interfacing Concepts

Introduction

This chapter describes the functions and requirements of interfaces between the computer and its
resources. Most of the concepts in this chapter are presented in an informal manner. Hopefully, all
levels of programmers can gain useful background information that will increase their understand-
ing of the why and how of interfacing.

Terminology

These terms are important to your understanding of the text of this manual. They are not highly
technical, so don’t worry about not having a PhD. in computer science to be able to understand
all of them. The purpose of this section is to make sure that our terms have the same meanings.

The term computer is herein defined to be the processor, its support hardware, and the
Pascal-language operating system; together these system elements manage all computer re-
sources. The term computer resource is herein used to describe all of the ‘‘data-handling”
elements of the system. Computer resources include: internal memory, CRT display, keyboard,
and disc drive, and any external devices that are under computer control.

The term hardware describes both the electrical connections and electronic devices that make
up the circuits within the computer; any piece of hardware is an actual physical device. The
term software describes the user-written, Pascal-language programs.

22 Interfacing Concepts

(includes operating
system and user

memory)
Internal CRT
Memory Display Keyboard
Backplane

Connector
Data and A A

Control Buses
Backplane
Connectors

Di Built-In
Processor Isc HP-1B < 25 X
Drive
Interface

HP-1B
Connector

Block Diagram of the Computer

The term I/O is an acronym that comes from “‘Input and Output’’; it refers to the process of
copying data to or from computer memory. Moving data from computer memory to another
resource is called output. During output, the source of data is computer memory and the
destination is any resource, including memory. Moving data from a resource to computer

memory is input; the source is any resource and the destination is a variable in computer
memory.

The term bus refers to a common group of hardware lines that are used to transmit information
between computer resources. The computer communicates directly with the internal resources
through the data and control buses. The computer backplane is an extension of these internal
data and control buses. The computer communicates indirectly with the external resources
through interfaces connected to the backplane hardware.

Electronic
Buffering

Hardware

Eight Connectors
in the Card Cage

Processor

Jeee LI

Backplane Hardware

Interfacing Concepts

Why Do You Need an Interface?

The primary function of an interface is, obviously, to provide a communication path for data
and commands between the computer and its resources. Interfaces act as intermediaries be-
tween resources by handling part of the ‘“‘bookkeeping” work, ensuring that this communica-
tion process flows smoothly. The following paragraphs explain the need for interfaces.

First, even though the computer backplane is driven by electronic hardware that generates and
receives electrical signals, this hardware was not designed to be connected directly to external
devices. The electronic backplane hardware has been designed with specific electrical logic
levels and drive capability in mind. Exceeding its ratings will damage this electronic hardware.

Second, you cannot be assured that the connectors of the computer and peripheral are com-
patible. In fact, there is a good probability that the connectors may not even mate properly, let
alone that there is a one-to-one correspondence between each signal wire’s function.

Third, assuming that the connectors and signals are compatible, you have no guarantee that the
data sent will be interpreted properly by the receiving device. Some peripherals expect single-
bit serial data while others expect data to be in 8-bit parallel form.

Fourth, there is no reason to believe that the computer and peripheral will be in agreement as to
when the data transfer will occur; and when the transfer does begin the transfer rates will
probably not match. As you can see, interfaces have a great responsibility to oversee the
communication between computer and its resources. The functions of an interface are shown in
the following block diagram.

—
I Interface I
| Computer |
| Compatible) |

Connector Logic |
! Level

[Interface Matcher
[- Logic Cabl |

— able .

C t 1= - [| | Peripheral
omputer L — Device
I = Device |
| Compatible |
| Logic Connector |
Level

| Matcher |
| |
| |
e om e e e e e e e e e e e — — — — — — —J

Functional Diagram of an Interface

23

24

Interfacing Concepts

Electrical and Mechanical Compatibility

Electrical compatibility must be ensured before any thought of connecting two devices occurs.
Often the two devices have input and output signals that do not match; if so, the interface
serves to match the electrical levels of these signals before the physical connections are made.

Mechanical compatibility simply means that the connector plugs must fit together properly. All
Series 200 interfaces have 100-pin connectors that mate with the computer backplane. The
peripheral end of the interfaces may have unique configurations due to the fact that several types of
peripherals are available. Most of the interfaces have cables available that can be connected directly
to the device so you don’t have to wire the connector yourself.

Data Compatibility

Just as two people must speak a common language, the computer and peripheral must agree
upon the form and meaning of data before communicating it. As a programmer, one of the
most difficult compatibility requirements to fulfill before exchanging data is that the format and
meaning of the data being sent is identical to that anticipated by the receiving device. Even
though some interfaces format data, most interfaces have little responsibility for matching data
formats; most interfaces merely move agreed-upon quantities of data to or from computer
memory. The computer must generally make the necessary changes, if any. so that the receiv-
ing device gets meaningful information.

Timing Compatibility
Since all devices do not have standard data-transfer rates, nor do they always agree as to when
the transfer will take place, a consensus between sending and receiving device must be made. If
the sender and receiver can agree on both the transfer rate and beginning point (in time), the
process can be made readily.

If the data transfer is not begun at an agreed-upon point in time and at a known rate, the
transfer must proceed one data item at a time with acknowledgement from the receiving device
that it has the data and that the sender can transfer the next data item; this process is known as a
“handshake’’. Both types of transfers are utilized with different interfaces and both will be fully
described as necessary.

Additional Interface Functions

Another powerful feature of some interface cards is to relieve the computer of low-level tasks,
such as performing data-transfer handshakes. This distribution of tasks eases some of the
computer’s burden and also decreases the otherwise-stringent response-time requirements of
external devices. The actual tasks performed by each type of interface card vary widely and are
described in the next section of this chapter.

Interfacing Concepts

Interface Overview

Now that you see the need for interfaces, you should see what kinds of interfaces are available for
the Series 200 computers using the Pascal Workstation System. Each of these interfaces is specifi-
cally designed for specific methods of data transfer; each interface’s hardware configuration reflects
its function.

This section briefly describes only these interfaces:
e HP-IB
o RS 232 Serial
e GPIO

Note that this Pascal System also supports the following types of interfaces:
e Data Communications
e EPROM Programmer
e Video output

The HP-IB Interface

This interface is Hewlett-Packard’s implementation of the [EEE-488 1978 Standard Digital Inter-
face for Programmable Instrumentation. The acronym ‘“HP-IB” comes from Hewlett-Packard
Interface Bus, often called the ‘‘bus”.

Data
HP-1B " 'I

interface

Handshake
Data and
Control Hardware
Backplane and
Connector Firmware Control

I Logic and Shield
Grounds

Shielded Cable
to Device(s)

(=

25-Pin Connector

!

Block Diagram of the HP-IB Interface

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical, data, and
timing) with no additional modification. Just about all you need to do is connect the interface cable
to the desired HP-IB device and begin programming. All resources connected to the computer
through the HP-IB interface must adhere to this IEEE standard.

The “‘bus” is somewhat of an independent entity; it is a communication arbitrator that provides an
organized protocol for communications between several devices. The bus can be configured in
several ways. The devices on the bus can be configured to act as senders or receivers of data and
control messages, depending on their capabilities.

25

26 Interfacing Concepts

The Serial Interface

The serial interface changes 8-bit parallel data into bit-serial information and transmits the data
through a two-wire (usually shielded) cable; data is received in this serial format and is con-
verted back to parallel data. This use of two wires makes it more economical to transmit data
over long distances than to use 8 individual lines.

Bit-Serial Data
(In)

I
Parallel Data, | parajiel/Serial (Out)
Converter Handshak
I (UART) andshake Shielded Cable

Data and |
Control Serial I
Backplane Interface
Connector Hardware .
<‘F Special Purpose
7 6

to a Device

il

50-Pin Connector

Grounds

< 7

Block Diagram of the Serial Interface

7

Data is transmitted at several programmable rates using either a simple data handshake or no
handshake at all.

The GPIO Interface

This interface provides the most flexibility of the three interfaces. It consists of 16 output-data
lines, 16 input-data lines, two handshake lines, and other assorted control lines. Data is trans-
mitted using several types of programmable handshake conventions and logic sense.

Parallel Data Out
16

v

Parallel Data In
16

{\

Shielded Cable
to a Device

Data and Handshake
Control GPIO 4
Backplane Interface
Connector Hardware Special Purpose
6

AN

50-Pin Connector

Grounds

Block Diagram of the GPIO Interface

TN

Interfacing Concepts

Much of the flexibility of this interface lies in the fact that you have almost direct access to the
internal data bus for outputting and entering data.

Data Representations

As long as data is only being used internally, it really makes little difference how it is repre-
sented; the computer always understands its own representations. However, when data is to be
moved to or from an external resource, the data representation is of paramount importance.

Bits and Bytes

Computer memory is no more than a large collection of individual bits (binary digits), each of
which can take on one of two logic levels (high or low). Depending on how the computer interprets
these bits, they may mean on or not on (off), true or not true (false), one or zero, busy or not busy,
or any other bi-state condition. These logic levels are actually voltage levels of hardware locations
within the computer. The following diagram shows the voltage of a signal line versus time and
relates the logic levels to voltage levels.

Voltage of
a Signal Line
A
+5v -
\,\—J/\/\— Logic High
Logic Ground » Logic Low
(0v) t to 13 Time

Voltage Levels and Positive-True Logic

In some cases, you want to determine the state of an individual bit (of a variable in computer
memory, for instance). The logical binary functions (BIT_SET, BINCMP, BINIOR, BINEOR,

and BINAND) provide access to the individual bits of data.

In most cases, these individual bits are not very useful by themselves, so the computer groups
them into multiple-bit entities for the purpose of representing more complex data. Thus, all data
in computer memory are somehow represented with binary numbers.

The computer’s hardware can access groups of 16 bits at one time through the internal data
bus; this size group is known as a word. With this size of bit group, 65536 (=2 1 16) different
bit patterns can be produced. The computer can also use groups of eight bits at a time; this size
group is known as a byte. With this smaller size of bit group, 256 (=2 1 8) different patterns can
be produced. How the computer and its resources interpret these combinations of ones and
zeros is very important and gives the computer all of its utility.

The computer is also capable of logically handling 32 bits; this size group is known as a long
word and is the Pascal INTEGER type.

27

28

Interfacing Concepts

Representing Numbers

The following binary weighting scheme is often used to represent numbers with a single data
byte. Only the non-negative integers O through 255 can be represented with this particular
scheme.

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 0 1 0 1 L 0

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value =4 | Value =2 | Value =1

Notice that the value of a 1 in each bit position is equal to the power of two of that position. For
example, a 1 in the Oth bit position has a value of 1 (=2 1 0), a 1 in the 1st position has a value
of 2 (=211), and so forth. The number that the byte represents is then the total of all the
individual bit’s values.

Determining the Number Represented

0«270= 0
Number represented =

4
0
= 16 2+4+16 + 128 = 150
0
0
8

The preceding representation is used by the “ORD”’ function when it interprets a byte of data.
The next section explains why the character “A” can be represented by a single byte.

PROGRAM example(inputsoutput);

YAR number : INTEGERS
BEGIN

number 1= ORD('A’) S

WRITELNC’ Number = “sniumber) s
END .

Printed Result
Number = 63

Interfacing Concepts 29

Representing Characters

Data stored for humans is often alphanumeric-type data. Since less than 256 characters are
commonly used for general communication, a single data byte can be used to represent a charac-
ter. The most widely used character set is defined by the ASCII standard'. This standard defines the
correspondence between characters and bit patterns of individual bytes. Since this standard only
defines 128 pattersn (bit 7=0), 128 additional characters are defined by the 9826 (bit 7=1). The
entire set of the 256 characters on the Series 200 computers is hereafter called the ‘“‘extended
ASCII” character set.

When the CHR function is used to interpret a byte of data, its argument must be specified by its
binary-weighted value. The single (extended ASCII) character returned corresponds to the bit
pattern of the function’s argument.

PROGRAM example(inpPutsoutpPut) i
VAR number @ INTEGER?

BEGIN

number = B53

WRITELN(’ Character is ‘schr{number));i
END.

Printed Result

Character is A

Representing Signed Integers

There are two ways that the computer represents signed integers. The first uses a binary
weighting scheme similar to that used by the ORD function. The second uses ASCII characters
to represent the integer in its decimal form.

Internal Representation of Integers

Bits of computer memory are also used to represent signed (positive and negative) integers.
Since the range allowed by eight bits is only 256 integers, a double word (four bytes) is used to
represent integers. With this size of bit group, 4 294 967 296 (=2 1 32) unique integers can be
represented.

The range of integers that can be represented by 32 bits can arbitrarily begin at any point on the
number line. With Series 200 Workstation Pascal, this range of integers has been chosen for
maximum utility; it has been divided as symmetrically as possible about zero, with one of the bits
used to indicate the sign of the integer.

1 ASCII stands for ‘‘American Standard Code for Information Interchange’. See the Appendix for the complete table.

30

Interfacing Concepts

With this “*2’s complement’” notation, the most significant bit (bit 31) is used as a sign bit. A sign
bit of 0 indicates positive numbers and a sign bit of 1 indicates negatives. You still have the full
range of numbers to work with, but the range of absolute magnitudes is divided in half
(—2 147 483 648 through 2 147 483 647). The following 32-bit integers are represented using
this 2’s-complement format.

Binary representation

Decimal equivalent

1111 1111 1111 1111 1111 1111 1111 1111 -1
0000 0000 0000 0000 0000 0000 0000 0001 1
1111 1111 1111 1111 1111 1111 OOOO 0001 - 255
0000 0000 0000 0000 0000 0000 1111 1111 255

sign bit—i‘ 2T8-L| ZTO--1
2130 217

The representation of a positive integer is generated according to place value, just as when
bytes are interpreted as numbers. To generate a negative number’s representation, first derive
the positive number’s representation. Complement (change the ones to zeros and the zeros to
ones) all bits, and then to this result add 1. The final result is the two’s-complement representa-
tion of the negative integer. This notation is very convenient to use when performing math
operations. Let’s look at a simple addition of 2 two’s-complement integers.

Example: 3+(-3) = ?

First, +3 is represented as: 0000 0000 0000 0000 0000 0000 0000 0011

Now generate —3’s representation:

first complement + 3, 1111 1111 1111 1111 1111 1111 1111 1100
then add 1 + 0000 0000 0000 0000 0000 0000 0000 0001
—3’s representation: 1111 1111 1111 1111 1111 1111 1111 1101
Now add the two numbers: 1111 1111 1111 1111 1111 1111 1111 1101
+ 0000 0000 0000 0000 0000 0000 0000 0011

le 1< carry on

final carry
not used

0000 0000 0000 0000 0000 0000 0000 0000all places

Interfacing Concepts

ASCII Representation of Integers

ASCII digits are often used to represent integers. In this representation scheme, the decimal
(rather than binary) value of the integer is formed by using the ASCII digits O through 9
{CHR(48) through CHR(57), respectively}. An example is shown below.

Example

The decimal representation of the binary value “1000 0000 is 128. The ASCII-decimal
representation consists of the following three characters.

Character 1 2 8

Decimal value
of character

49 50 56

Binary value

of character 00110001 | 00110010 | 00111000

Representing Real Numbers

Real numbers, like signed integers, can be represented in one of two ways with the computers.
They are represented in a special binary mantissa-exponent notation within the computers for
numerical calculations. During output and enter operations, they can also be represented with
ASClII-decimal digits.

Internal Representation of Real Numbers

Real numbers are represented internally by using a special binary notation'. With this method,
all numbers of the REAL data type are represented by eight bytes: 52 bits of mantissa magni-
tude, 1 bit for mantissa sign, and 11 bits of exponent. The following equation and diagram
illustrate the notation; the number represented is 1/3.

Byte 1 2 3 4 8

Decimal vaiue

of character 63 213 85 85 85

Binary value

of characters ?0111111 11010101 01010101 01010101 ... | 01010101
mantissa sign exponent mantissa

1 The internal representation used for real numbers is the IEEE standard 64-bit floating-point notation.

31

32

Interfacing Concepts

ASCII Representation of Real Numbers

The ASCII representation of real numbers is very similar to the ASCII representation of inte-
gers. Sign, radix. and exponent information are included with ASCII-decimal digits to form
these number representations. The following example shows the ASCII representation of 1/3.
Even though, in this case, 18 characters are required to get the same accuracy as the eight-byte
internal representation shown above, not all real numbers represented with this method require

this many characters.

ASCI| characters 0

Decimal value

of characters 48

46

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

Chapter

3

The I/O Procedure Library

Introduction

This chapter presents an introduction to the I/O Procedure Library. This discussion includes the
organization of the library, major capabilities, and an introduction into the use of the library. The
last sections of this chapter contain a list of module capabilities. It is recommended that you scan
these sections to familiarize yourself with what features are available in the I/O Library.

Pascal /O

The Pascal language has been well known for some time as a good high-level langauge with
modularity and transportability features. It has not had good I/O capabilities, particularly device I/O.
The Pascal language on the HP Series 200 computers still does not have I/O as a fundamental part
of the language.

Rather than adding specific built-in language features to support I/O, graphics, and other useful
extensions, HP Standard Pascal has a general extension mechanism called modules. A module is
very similar to a Pascal PROGRAM in that it can contain CONSTants, TYPEs, VARiables,
PROCEDUREs, and FUNCTIONS.

Various portions of a module can be EXPORTed for anyone to use. The Pascal /O Procedure
Library is a collection of several modules. When you want to use the capabilities of the 1/O library,
you must tell the Compiler which module(s) you want from the I/O library. This is done with the
IMPORT statement.

Here is an example of using the I/O library. Suppose you want to write a program that reads a string
from a device and then writes a string to the same device. The read and write string procedures are
both in the I/O module called GENERAL_2. So the program might look like this:

PROGRAM test (INPUT » OUTPUT)3

IMPORT GENERAL_Z3 { tell the compiler which module 2
VAR str : STRINGLZ25513
BEGIN
READSTRING(7Z24sstr) 3 { read str with CR/LF termination 1}
WRITESTRINGLN(724+str) 3 { write str with CR/LF terminmation 2

END.

33

34 The /O Procedure Library

I/O Library Organization

Each of the I/O Library modules contains related features and capabilities. The I/O library contains
modules that provide general capabilities that are valid for all interfaces and devices and of specific
capabilities that are valid only for a specific interface or type of interface. Reading a character is an
example of a general capability. Checking for ACTIVE CONTROL is an HP-IB specific operation.

The 1/O Library is divided into groups: general and interface specific. The interfaces currently
supported in the [/O Library consist of HP-IB, Serial, and Parallel (GPIO) interfaces. In the imple-
mentation of the [/O Library, all the necessary Parallel capabilities are handled in the general
capabilities group. So, the I/O Library consists of three groups:

e GENERAL
e HPIB
e SERIAL

Each of these groups consists of several modules. The last section in this chapter contains a list of
the procedures and functions in each of the modules in the I/O Library.

GENERAL

The GENERAL group contains the common operations used by all interfaces. This group consists
of the following modules:

Module Capability Example
IODECLARATIONS common constants, types, vari- what type of card is at interface
ables select code 7
IOCOMASM binary operations binary AND of two integers
GENERAL_Q machine and hardware depen- hardware register access
dent status and control
GENERAL_1 character /O input a character
GENERAL_2 string and numeric /O input a real number
GENERAL_3 error messages
GENERAL_4 transfers and buffers output data via DMA
HPIB
The HPIB group contains routines that are useful for the built-in and optional HP-IB interfaces.
Module Capability Example
HPIB_0 access to HP-IB interface bus lines clear the ATN line
HPIB_1 low level bus control send an ATN bus command
HPIB_2 HP-IB messages send selective device clear

HPIB_3 high level bus status and control request bus service

The /O Procedure Library 35

SERIAL

The SERIAL group contains the capabilities specific to serial interfaces. Currently, the HP
98626 and 98628 are supported.

Module Capability Example
SERIAL_O access to serial interface lines set Clear To Send
SERIAL_3 high level serial control set baud rate to 2400

Each module is a separate entity in the Pascal system. Being separate, only those modules
imported from the system library are used in the running of an application program. This
partitioning of the library minimizes the size of the program. The Pascal system, in normal
programming, will load and link all the modules that you have imported. You only need to
explicitly import the appropriate modules and use their procedures and functions.

I/O Library Initialization

The /O Library provides a setup procedure, IOINITIALIZE, and a clean up procedure,
IOUNINITIALIZE. Both procedures operate in a very similar manner. They perform the
following operations:

e Reset all interfaces.
e Stop all transfers.
® Release all I/0 resources (such as DMA channels).

A well written Pascal program that uses the /O Library will include these procedures. These
procedures are in the GENERAL _1 module. The example program from the previous section
rewritten would look like:

PROGRAM test (INPUT » OUTPUT)3
IMPORT GENERAL_1:
GENERAL -23 { tell the compiler which modules 1}
VAR str : STRINGLZ3513
BEGIN

IOINTIALIZES { set urP the I/0 svstem ¥

READSTRING(724sst1) i { read str with CR/LF termination 2

WRITESTRINGLN(7Z4,5tr) 3 { write str with CR/LF termination 1%}

IOUNINITIALIZES { clean up the I/0 svstem b
END.

The /0O system is used by the rest of the Pascal system for [/O operations. Because of this use,
[OINITIALIZE is called by the system when power is first applied to the computer. Also,
because /O errors can occur during normal operation, the STOP and CLR /O keys call
IOUNINITIALIZE to clean up the I/O system state. This information leads to the fact that it is, in
many instances, unnecessary to call IOINITIALIZE and IOUNINITIALIZE. It is, however,
strongly recommended that you use these procedures. The use of the set-up and clean-up
procedures will make your programs more resistant to hardware and firmware problems and to
programming errors in software.

36 The 1/O Procedure Library

GENERAL Modules

GENERAL modules contain the capabilities that are useful for all interfaces. For syntax and seman-
tics information refer to the reference section in the back of this manual.

MODULE iocomasm
FUNCTION bit_set Is a bit set in a 32-bit integer?
FUNCTION binand Logical AND of two 32-bit integers.
FUNCTION binior Logical OR of two 32-bit integers.
FUNCTION bineor Exclusive OR of two 32-bit integers.
FUNCTION bincmp Logical complement of a 32-bit integer.

MODULE general 0

FUNCTION ioread_word
PROCEDURE iowrite_word

FUNCTION ioread_byte

PROCEDURE iowrite_byte

FUNCTION iostatus
PROCEDURE iocontrol

MODULE general_-1

PROCEDURE ioinitialize
PROCEDURE iouninitialize

PROCEDURE ioreset

Read a 16-bit interface register.
Write a 16-bit interface register.
Read an 8-bit interface register.
Write an 8-bit interface register.
Read the firmware interface register.
Wirite the firmware interface register.

Reset the entire 1/O system.
Reset the entire 1/0 system.
Reset a single interface card.

PROCEDURE readchar Read a character from an interface.

PROCEDURE writechar Write a character to an interface.

PROCEDURE readword Read a 16-bit word from an interface.

PROCEDURE writeword Write a 16-bit word to an interface.

PROCEDURE set_timeout Set up an interface timeout value.
MODULE general_2

PROCEDURE readnumber Read a real number.

PROCEDURE writenumber Write a real number.

PROCEDURE readstring Read a string.

PROCEDURE readstring_until Read a string until a character match.

PROCEDURE writestring Write a string.

PROCEDURE readnumberln Read a real number until a LF occurs.

PROCEDURE writenumberln Write a real number with a CR/LF.

PROCEDURE writestringln Wirite a string with a CR/LF.

PROCEDURE readuntil Read until a character match.

PROCEDURE skipfor Skip over a number of characters.

MODULE general.3
FUNCTION ioerror_message

MODULE general_4
PROCEDURE abort_transfer Stop a transfer.
PROCEDURE transfer Transfer a block of data as bytes.
PROCEDURE transfer_word Transfer a block of data as words.
PROCEDURE transfer_until Transfer in until a match character.
PROCEDURE transfer_end Transfer using a card condition.
PROCEDURE iobuffer Create a transfer buffer.
PROCEDURE buffer_reset Reset the buffer space.
FUNCTION buffer_space How much space is left in the buffer.

What is the error message for a specific 1/O error?

FUNCTION buffer_data

PROCEDURE readbuffer
PROCEDURE writebuffer
PROCEDURE readbuffer_string
PROCEDURE writebuffer_string

FUNCTION buffer_active
FUNCTION isc_active

How much data is left in the buffer.
Read a character from a buffer.

Write a character to a buffer.

Read a string from a buffer.

Write a string to a buffer.

Is there a transfer active on the buffer?

Is there a transfer active on the interface?

The I/O Procedure Library

HPIB Modules

HPIB modules contain routines that are useful for the built-in and optional HP-IB interfaces. For
syntax and semantics information refer to the reference section in the back of this manual.

MODULE hpib_0
PROCEDURE set_hpib
PROCEDURE clear_hpib
FUNCTION hpib_line

MODULE hpib_1
PROCEDURE send_command
FUNCTION my_address
FUNCTION active_controller
FUNCTION system_controller
FUNCTION end_set

MODULE hpib_2
PROCEDURE abort_hpib
PROCEDURE clear
PROCEDURE listen
PROCEDURE local
PROCEDURE local_lockout
PROCEDURE pass_control
PROCEDURE ppoll_configure
PROCEDURE ppoll_unconfigure
PROCEDURE remote
PROCEDURE secondary
PROCEDURE talk
PROCEDURE trigger
PROCEDURE unlisten
PROCEDURE untalk

MODULE hpib_-3
FUNCTION requested
FUNCTION ppoll
FUNCTION spoll
PROCEDURE request_service
FUNCTION listener
FUNCTION talker
FUNCTION remoted
FUNCTION locked_out

Set an HP-IB hardware line.
Clear an HP-IB hardware line.
[s an HP-IB hardware line set?

Send an ATN command.

What is my bus address?

Am [active controller?

Am [system controller?

Was EOI received with the last byte?

Stop all bus activity.

Send clear command to a device.
Send listen command to a device.
Send local command to a device.
Send lockout command to all devices.
Pass active control to a device.
Configure PPOLL response of a device.
Remove PPOLL response of a device.
Send remote command to a device.
Send a secondary command.

Send talk command to a device.

Send trigger command to a device.
Send unlisten command to all devices.
Send untalk command to all devices.

Is SRQ asserted?

What is the bus parallel poll byte?
What is the device serial poll byte?
Request bus service (via SRQ).
Am | a listener?

Am [a talker?

Is REN being asserted?

Am I in the local lockout state?

37

38 The I/O Procedure Library

SERIAL Modules

SERIAL modules contain the capabilities specific to serial interfaces. Currently, the HP 98626 and
98644 Serial and HP 98628 Datacomm cards are supported. For syntax and semantics informa-
tion, refer to the reference section in the back of this manual.

MODULE serial_0

PROCEDURE set_serial Set a serial line.
PROCEDURE clear_serial Clear a serial line.
FUNCTION serial_line Is a serial line set?

MODULE serial._3
PROCEDURE set_baud_rate Set the interface baud rate.
PROCEDURE set_stop_bits Set the interface number of stop bits.
PROCEDURE set_char_length Set the interface character length.
PROCEDURE set_parity Set the interface parity.
PROCEDURE send_break Send a serial BREAK.
PROCEDURE abort_serial Stop all serial activity.

IODECLARATIONS Module

Most of the 1/O Library consists of modules that contain procedures and functions. However, the
IODECLARATIONS module is a module of constants, types, and variables. This module is used by
the rest of the I/O Library for range checking, common variables, and /O system tables. [ODEC-
LARATIONS is also of use to you, the programmer, for various reasons. This section will not fully
discuss the IODECLARATIONS module. It will only discuss few points of general interest.

The useful information in [ODECLARATIONS relates to interface information. Typical questions
about interfaces include:

e What is the range of interfaces?

e [s there an interface on interface select code 12?

o [s the interface on interface select code 15 a serial interface?

o [s the interface on interface select code 15 a 98626 serial interface or a 98628 serial interface?

The descriptions that follow will show the actual Pascal code used to define the various constants,
types and variables.

Range of Interface Select Codes and Device Selectors

This range is supported by several constants and types. The I/O Library supports various select
codes, as described in the next chapter. The interface select code range is from O through 31. There
are two constants that define this range:

CONST IOMINIGC
IOMAXISC

[
313

i

The I/O Procedure Library

In addition to defining the upper and lower limits of select codes there are type definitions that
support interface select code and device variables. These type definitions are:

IOMINISC..IDOMAXISC 3
IOMINISC, . IOMAXISC*100+993

TYPE TYPE_ISC
TYPE.DEVICE

These type definitions are used in the I/O Library for interface select code and device para-
meters. With the compiler option SRANGE ONS$, which is the default, the compiler will emit a
range check for your parameters. So, if you tried to use an interface select code of 45, the
program would generate an error. You can use the type definitions for interface select code and
device variables, if you desire. It is also possible to use integer variables and other integer
subranges for interface select code and device variables.

Information about Interface Cards

There is a table defined in the IODECLARATIONS module that contains common information
about all interface cards in the computer. This table is called ISC_TABLE and is an array of
structured elements, a compound data type. The definition of this table is:

VAR ISC_TABLE : PACKED ARRAY [TYPE_ISC]
OF isc_table_tvprei

The compound data type ISC_TABLE_TYPE contains several pieces of information. The de-
finition of this type is:

TYPE isc_table_tvyre = RECORD
io.drv.pPtr: “driveri { Ptr to drivers 1}
io-tmP_Ptr: “memorvi { Ptr to R/MW ¥
CARD_TYPE : -32768.,.327671
user_time : INTEGERS { for timeout ¥
CARD_ID 1 -32768.,.327671
card_ptr : “cardj { card addr ¥
END 3§

The table contains pointers to the actual drivers, driver read/write memory space, user specified
timeout value and a pointer to the physical address of the interface card in the computer’s
memory. The table also contains the type of card and card id information. You should only
need to examine the card type and card id.

Note

All of this information is for system use. Do not modify any table
entries.

39

40 The I/O Procedure Library

The following program lists the type of card and card id for all interface select codes.

PROGRAM list_cards (INPUT + OUTPUT)3
IMPORT IODECLARATIONSS
VAR 1sc : TYPE_ISC3

BEGIN
FOR isc := IOMINISC TO IOMAXISC DO
WRITELN(‘card 7 iscily
is of tyre ' ISC.TABLECiscl.CARD_TYPE:4,
“ with an id of ‘,ISC_TABLE[iscl,CARD_ID:4)3
END .

This program is not useful because the values for card type and id are integers and you do not know
what each value means. The IODECLARATIONS module has a series of pre-defined constants for
the card type and id.

The CARD_TYPE field contains information about the generic card type—whether the card is
Serial, HP-IB, etc. The constants are as follows:

CONST

no_card
other_card

system_card
hpib_card

drip.cari

serial_card
dgrarhics_card =
srm.card =
bubble_card =
EPIOM_PTdmr =

i
L1 I = PR I g)

0o 0o~ O

The CARD_ID field contains hardware specific information. For example, the id will inform you
whether an HPIB_CARD is the internal interface or an optional 98624 plug-in card. This should
only be necessary if you are doing low-level operations to the interfaces.

Note
The appearance of a card id in the following list does not imply Pascal
support for the specified interface. The cards are mentioned because
they may be supported by other languages which run on this machine.

The constants are defined as follows:

CONST

hr398G28_

hr398GZ29

hr_datacomm

hp8BGZ0

internal_Kbd
internmal_crt
internal_hpPib

no-id

hp98G624
hp98B6Z6
hp98622
hr88623
hp98G625

hpOB8628.

heGATOR
hp88253
hr38GZ27
hpP98259
hp38644

dsndl -7
-G3
-9
-43
-3i
23

-14

1] 1n 11 " 11}

H u

03

13
23

33
43
81
204
254
273
283
303
BG3

asvyne

tH 11} H

P B et T et T ane B B e B aoe B e TR aoe B aoe B 2o

HP-1B
Serial 1}
GPID ¥

BCD ¥

Fast Disc }
Serial }

bit-marprped alrha/drarhics ?
EPROM programmer }

Color outpPut }
Bubble }
Serial }

A program to determine card type and id is shown below.

PROGRAM List_cards

IMPORT

IDDECLARATIONS S

VAR

Isc ¢+ Trre_Isci

BEGIN
FOR Isc
BEGIN

IF Isc.TablelIscl.Card.Tvre

(INPUT »OUTPUT) §

:= I0MinIsc TO IOMaxIsc DO

BEGIN

WRITE('Card at

“ylsci2y’

CASE Isc_TablelIscl.Card.Trre OF

HPIB_Card:
GPIO.Card:
Serial.Card:

Graphics_Card:

SRM_Card:
Bubble.Card:
EPROM_Prdmr:
OTHERWISE

WRITE(' HP-IB
WRITE(' GPIOD

WRITE(’ Serial
WRITE(’ Grarhics
WRITE(' SRM
WRITE(Bubble
WRITE(’ EPROM
WRITE(’ Other

END3 { CASE Card_Tvpe }

is of tvpe:

)3
)3
)3

System.Card THEN

')

')
‘)i
‘)i
R

)5

The /O Procedure Library 41

42 The I/O Procedure Library

WRITE(Card_ID: 7}
CASE Isc_TablelIscl.Card.ID OF

HP9BZ53: WRITE(' HP 9BZ53 s
HP9BZ259: WRITE(' HP 98239 s
HPOBGZZ: WRITE(' HP 98622)
HP9BEZ3: WRITE(' HP 9BBZ3 R
HP98BZ4: WRITE(' HP 98GBZ4)3
Internal _HPIB: WRITE(’ built-in N
HP9BBZS: WRITE('’ HP 9BBZS R
HPO9BGBZG: WRITE(’ HP 9BGZ26)
HP9BBZ7: WRITE(' HP 9BGZ27)3
HP9B8BZB8.Asv¥nc: WRITE(’ HP 9BBEB - Asvync’)i
HPOBGZD: WRITE(’ HP 9BBZ9)3
HPOBG44d: WRITE(' HP 98644)3
OTHERWISE WRITE(' Other R

END: { CASE Card_ID 1%
WRITELNS
ENDI { IF .. BEGIN 1}
ENDY { FOR .. BEGIN 1}
END.

Other Types

In addition to the previously specified information there are some pre-defined types used through-
out the I/O Library. These type definitions are:

I0.BIT = 04,4015 3
I0_BYTE = 0,285 3
I0_WORD = -32768,.32767 i

IO_STRING STRINGL25313

Chapter

4

Directing Data Flow

Introduction

This chapter describes how to specify which computer resource is to send data to the computer or
receive data from the computer. There are three main resources for the source and destination of
data:

¢ Internal devices
o External devices
® Mass storage files

The I/O Library is used for accessing internal and external devices and is discussed here. The Pascal
system has other methods for accessing mass storage files and these commands are covered in the
Pascal Workstation System manual.

Specifying a Resource

The procedures and functions that perform I/O have a device selector parameter as a part of the
parameter list. This parameter has two forms: a simple device selector and an addressed device
selector.

Simple Device Selectors

Devices include the built-in CRT and keyboard, external printers and instruments, and all other
physical entities that can be connected to the computer through an interface. Thus, each device
connected to the computer can be accessed through its interface. Each interface has a unique
number by which it is identified, known as its interface select code. The internal devices are
accessed with the following, permanently assigned interface select codes.

Device Select Code
CRT Display 1
Keyboard 2
Built-in HP-IB 7
Built-in Serial 9

43

44 Directing Data Flow

Optional interfaces all have switch-settable select codes. These interfaces cannot use select
codes 0 through 7: the valid range is 8 through 31. The following settings on optional interfaces
have been made at the factory but can be changed to any other unique select code. See the
interface’s installation manual for further instructions.

Device Select Code
98624A HP-IB 8
98626 Serial 9
98644 Serial 9
98622A GPIO 12
98625A Disc 14
98625A Datacomm 20

An example program using interface select codes is shown below:

PROGRAM selectcode (INPUT » OUTPUT)3

IMPORT GENERAL_Z3

VAR str : STRINGLZ5513

BEGIN
WRITESTRING(1l: tvPe something - terminated by the ENTER Kev ')}
READSTRING_UNTIL(CHR(13) +2+s5t1) 3
WRITESTRING(1Zs ' messade from Kevboard - 733
WRITESTRINGLN(1Zystr) i

END.

Addressed Device Selectors

Each device on an HP-IB interface has an address by which it is uniquely identified. The
addressed device selector is a combination of the interface select code and the device’s bus
address. This combination is:

interface select code * 100 + device bus address = addressed device selector

A printer with a bus address of 1 on the internal HP-IB interface (which is an interface select
code of 7) would be accessed with a device selector of 701.

An example program using an addressed device selector is shown below:

PROGRAM dewvice (INPUT » OQUTPUT)3

IMPORT GENERAL_Z3

VAR num 1 REALS

BEGIN
READNUMBERLN (724 synium) 3
WRITESTRING(701 s ‘reading from voltmeter - /)3
WRITENUMBERLN (701 ymium) i

END .

Chapter

S

Outputting Data

Introduction

The preceding chapter described how to identify a specific device as the destination of data in a
WRITESTRING procedure. Even though a few examples were shown, the details of how the data is
sent was not discussed. This chapter describes the topic of outputting data to devices.

There are two general classes of output operations. The first type, known as “free field” output,
uses the computer’s default data representation. The second class provides precise control over
each character to be sent and is called ‘‘formatted”” output.

The I/O Library is a separate set of procedures and functions. As such, it does not have variable
length or variable type parameter lists. In Pascal there are normal “print” facilities called WRITE
and WRITELN (for write line) that can have a variable list. Some examples are:

WRITELN(‘hello there’)]}

WRITELN(‘the value received was ‘,i)}

WRITE(i’ times ‘+ds’ 1s eaual to ‘»i%*J)3
WRITE(client.rames»’ has ‘sclient.evecolors’ eves ’)i

Note that there are no requirements for what types of constants, variables, or expressions are
allowed in a list, nor are there any requirements for their order in a list.

Because of this restriction on the variability of lists, the 1/O Library only normally supports a small
set of types. These types are:

® Real expressions

® Strings (up to 255 characters)
@ Characters (8 bits)

® Words (16 bits)

The procedures that handle these types will only handle one of the type. These operations can be
used in a series to get the effect of a list.

45

46 Outputting Data

Free Field Output

As mentioned in the previous section, there are four main types supported directly by the 1/O
Library output facility. These are:

® Real Expressions
® String Expressions
® Characters

e Words

Real Expressions
There are two output procedures for real expressions: WRITENUMBER and WRITENUMBERLN.

Both operate in an identical fashion except that WRITENUMBERLN appends a carriage return and
line feed to the characters sent to the device. The form of these procedures is:

WRITENUMBER { device.selectory numeric.expression)i
WRITENUMBERLN { device_selectors numeric_expression)3

Both procedures are in the I/O Library module GENERAL_2. The device selector can be a simple
interface select code or it can contain addressing information. The numeric expression can be any
valid expression including simple real, integer, or integer subrange variables, numeric constants,
and numeric expressions. An example program follows:

PROGRAM realexpression (INPUT,CUTPUT)

IMPORT IODECLARATIONS 4
GENERAL .23
VAR a : REALS
i : INTEGER
deuvice : TYPE_DEVICES
BEGIN
device:=7015
i:=121%
ar=12.,343

WRITENUMBERLN(deuvice »i) 3

WRITENUMBERLN(deuvicesals

WRITENUMBERLN(deuvice s1234) 3

WRITENUMBERLN (devicesa+1234) 3

WRITENUMBERLN (deuvicesi+12) 3
END.

This program will produce the following output:

1,20000E+001
1,23400E+001
1.23400E+003
1,24634E+003
2240000E+001

Outputting Data 47

The example program did not use WRITENUMBER. This is because there are no additional
characters sent with the ASCII character sequence. Two numbers sent with two consecutive
WRITENUMBERSs might look like:

1.23456E+1239.,87654E-321

Notice that there is no separator. The examples toward the end of this section will show
examples of WRITENUMBER. Be sure that you remember that the real number can be pre-
ceded by a minus sign.

String Expressions

There are two output procedures for string expressions: WRITESTRING and
WRITESTRINGLN. Both operate in an identical fashion except that WRITESTRINGLN
appends a carriage return and line feed to the characters sent to the device. The form of these
procedures is:

WRITESTRING (device_.sprecifier » strind_expression) 3}
WRITESTRINGLN ¢ device.specifier » strind_expression) i

Both procedures are in the I/O Library module GENERAL_2. The device selector can be a simple
interface select code or it can contain addressing information. The string expression can be any
valid expression including simple string variables, string constants, and string expressions. An
example program follows:

PROGRAM strinds (INPUT,OUTPUT);

IMPORT IODECLARATIONS +
GENERAL .2}
VAR s : STRINGLZ5513
t : STRINGL3213
device : TYPE_DEVICES
BEGIN
device:=70113
s:='first string’}

ti='second string’s
WRITESTRING (devicess)i
WRITESTRINGLN(device st) 3
WRITESTRING (devices‘this is a strind constant and ‘)3
WRITESTRINGLN(device»‘this is the ’‘+5)]3
WRITESTRINGLN(devices'both ‘+s+’ and the ‘+t)}

END .

This program will produce the following output:

first stringsecond string
this is a string constant and this is the first string
both first string and the second string

48 Outputting Data

Characters
There is a single output procedure for single characters: WRITECHAR. The form of this proce-
dures is:

WRITECHAR (interface_select.codes character_expPression)i

The procedure is in the [/O Library module GENERAL_1. The interface select code cannot be a
device specifier (like 701). Refer to the HP-IB section regarding bus addressing. The character
expression can be a character variable, character constant, or character expression. An

example program follows:

PROGRAM characters (INPUT»OUTPUT) S
IMPORT IODECLARATIONS »
GENERAL 1,
GENERAL 23

UAR ¢ : CHARS
isd : INTEGER]S
device : TYPE_DEVICES
isc : TYPE_ISCS
BEGIN
isci=73%

device:s=7013
WRITESTRING(deuice s 'some characters ')}
WRITECHAR(1sc s ' x ")

cr='y i

WRITECHAR(1s5C9C) 3
J:=0RD(7z}
WRITECHAR(iscschr(d))i
FOR 1i:=65 TO 90 DO WRITECHAR(iscschr(i))}
WRITESTRINGLN(isc s 37053
END .,

This program will produce the following output:

some characters “xyzABCDEFGHIJKLMNOPORSTUWVWXYZ >

Words
There is a single output procedure for 16 bit words. It is WRITEWORD. The form of this

procedures is:

WRITEWORD (interface_select_codes word_expression)s

The procedure is in the /O Library module GENERAL_1. The first parameter must be an interface
select code: it cannot be a device selector (like 701). Refer to the HP-IB section regarding bus
addressing. The word expression can be a word, integer, or integer subrange variable, integer
constant, or integer expression. The evaluated value must be in the range of —32768 to 32767.

Outputting Data

The procedure has two different behaviors, depending on what type of interface it is used with.
When used with a GPIO interface (HP 98622), this procedure will send a single 16 bit quantity
over the 16 data lines on the interface. This procedure will send two consecutive bytes for all
other interface types — most significant byte first, least significant byte last. An example pro-
gram for an HP-IB interface follows:

PROGRAM words (INPUT,OUTPUT)

IMPORT IODECLARATIONS »
GENERAL_1
GENERAL_23

TYPE short = -32768.,.327673
UAR ¢ : CHARS

isd : INTEGER]:

X : I0O_WORD;:

4 : short]

deuvice : TYPE_DEVICES

isc : TYPE_ISCS
BEGIN

iscs=71

deuvice:=7013
WRITESTRING(devices‘some characters ')}
x:1=BE5*#256+663
WRITEWORD(isc sx) 3
WRITEWORD(isc1B7%256+68) 3
J1=BO9*256+703
WRITEWORD(iscsd) 3
Je=0RD(2"}
FOR i:=B65 TO 75 DO WRITEWORD(isc+j*¥256+i) 3
WRITESTRINGLN(isc s =')3
END.,

This program will produce the following output:

some characters “ABCDEFzAzBzCzDzEzFzGzHzlzJdzK:>

The following program is an example of how to use the “‘free field”’ procedures together to get
effect of a full parameter list:

PROGRAM strinds (INPUTOUTPUT) 3
IMPORT IODECLARATIONS »
GENERAL _1

GENERAL .23
STRINGLZ25513

REAL S

TYPE.DEWICES
TYPE.ISC

VAR st
X
device
isc
BEGIN
device:=7013
isc 1=73
s:='RangeliTrigderl iNumber’3
Xx:=1003
:='Btore’
WRITESTRING (devicess)
WRITENUMBER (isc PX)
WRITESTRING (isc 1) 3
WRITECHAR (isc rchr(10))3
END.,

i
.
L]

49

50

Outputting Data

This program will produce the following output sequence:

Formatted Output

The previous ‘‘free field”” procedures are adequate for a large number of applications. There
are, however, a large number of applications that need the ‘‘formatted” output capability. The
[/0O Library does not directly provide this capability. Formatted output is achieved with the use
of the built in procedure STRWRITE.

STRWRITE

The STRWRITE procedure is a version of the standard Pascal procedure WRITE. The differ-
ence is that STRWRITE sends the character stream to a string variable, as opposed to an output
file. The form of STRWRITE is as follows:

STRWRITE (string_variakle. starting_char, next_char.var,.. outputlist..)3j

The string variable is the destination for the output operation. The starting character position is an
integer expression that indicates which character in the string is the start of the output area. The
next character variable will contain, after the execution of STRWRITE, the next available character
in the string for a successive STRWRITE or other string operation. For additional information, refer
to The HP Pascal Language Reference for Series 200 Computers.

The following program is an example of how to use STRWRITE to produce formatted output:

PROGRAM formatted C(INPUT .OUTPUT);

IMPORT IODECLARATIONS 4
GENERAL_Z3

TYPE color = (blue » brown » dreen + red)i
YAR ssmame : STRINGLZ25S5]35

POS N : INTEGER

eves i colors

device : TYPE_DEVICE:
BEGIN

device:r=7013

name =’ John Smith’i

n 1=121

eves t=bhlues

STRWRITE(s +1 spos sy mame»’ 1s emplovee number “snid)s

SETSTRLEN(s sPos-1)3
WRITESTRINGLN(devicess) 3

STRWRITE(s+1+pos+ ‘and has ‘sevess’ eves ‘)3
SETSTRLEN(s yPos-1)1
WRITESTRINGLN(device 153

END,

Outputting Data 51

This program will produce the following output:

John Smith is emplovee number 12
and has BLUE eves

52 Outputting Data

Chapter

6

Inputting Data

Introduction

There are two general classes of input operations. The first type, known as “‘free-field” input, uses a
default interpretation of the data to be input. The second class provides precise control over each
character to be received and is called ‘‘formatted” input.

The /O Library is a separate set of procedures and functions. As such, it does not have variable
length or variable type parameter lists. However, in Pascal there are normal “input” facilities, called
READ and READLN (for read line), that can have a variable length list. Some examples are as
follows:

READ(name)i FOR i:= 1 TO 100 DO READ(mvcharlil);}
READ(voltadesfreauency)i READLN(Prompt)i

Note that there are no requirements for what types of variables are allowed in the list, nor are there
any requirements on the order of variables on the list. Because of this restriction on the variability of
lists, the 1/O Library only normally supports a small set of input data types. These types are as
follows:

¢ Real variables

® Strings (up to 255 characters)
o Characters (8 bits)

o Words (16 bits)

In addition to these data types, the I/O Library supports some field skipping facilities. The proce-
dures that handle these types and facilities will only handle one operation at a time. However these
operations can be used in a series to get the effect of a list.

53

54

Inputting Data

Free-Field Input
As mentioned in the previous section, there are four main data types supported directly by the /O
Library input facility:
® Real Variables
e String Variables
o Characters

e Words

Real Variables

There are two input procedures for real variables: READNUMBER and READNUMBERLN. Both
operate in an identical fashion except that READNUMBERLN searches for a line feed termination
from the device. The form of these procedures is:

READNUMBER (device.selectors numeric.expression)
READNUMBERLN (device.selectors numeric_expression)

3

3

Fundamental to understanding how these procedures work is the concept of termination. The
READNUMBER procedures will skip over any number of non-numeric characters until a numeric
character is found. Then, up to 255 numeric characters will be read in as an ASCII representation of
a real number. Numeric characters are defined to be the following characters:

0 5 E

1 6 e

2 7 +

3 8 _

4 9 period
space

When reading numbers, the terminating conditions are:

® Any non-numeric character after numeric characters have been read, or

® 255 numeric characters read.

Note

Note that spaces are not considered to be “‘non-numeric’”’ characters,
and therefore will not terminate numbers. Erroneous results may occur
if you try to use them to terminate or delimit numbers, because these
procedures do not report receiving erroneously formatted numbers.

Inputting Data

Both procedures are in the I/O Library module GENERAL_2. The first parameter can be either a
simple interface select code or a device selector that contains addressing information. The variable
must be a real variable (including a real array element). An example program follows:

PROGRAM realvariable (INPUTs OUTPUT)3
IMPORT IODECLARATIONS,
GENERAL.Z}
VAR
a i REAL S
BEGIN
{ inPut comes from Kevboard %
WRITELN('Type in a real numbers terminated by a non-numeric character’)s
READNUMBER (1 sa) 3
WRITELNS
WRITELN('Here is the value vou entered: ‘sa)i

WRITELN('Type in a real numbers terminated by CTRL-J’)}
READNUMBERLN(1,a) i

WRITELNS
WRITELN(‘Here is the value vou entered: ‘:a)i
END.
String Variables

There are two input procedures for string variables: READSTRING and READSTRING_UNTIL.
Both operate in a similar manner except that READSTRING_UNTIL searches for a specified
termination character where the READSTRING uses some default terminations.

The form of the READSTRING procedure is:

READSTRING (device_selectors strind_variable):

The READSTRING procedure will read characters into a string until one of the following termina-
tion conditions are encountered:

o A line feed is received.

® A carriage return and a line feed are received.

® The string variable is filled.
The line feed or carriage return and line feed are NOT placed in the string variable. The form of the
READSTRING_UNTIL procedure is:

READSTRING_UNTIL (termination_character:,

device.selectory stringd_variable)s

The READSTRING_UNTIL procedure will read in characters into a string until one of the following
termination conditions are encountered:

® The match character is received.
® The string variable is filled.

The termination character is placed into the string variable.

55

56 Inputting Data

Both procedures are in the I/O Library module GENERAL_2. An example program follows:

PROGRAM stringduvariable (INPUT,GUTPUT) 3

IMPORT IODECLARATIONS »
GENERAL 23
VAR s 1 STRINGLZ5515
t 1 STRINGL 815
BEGIN

{ the Kevboard is the 1nput device }

WRITELN(’enter a string termirated with a control-Jd’)3
READSTRING(14+5) 3
WRITELN(“vou entered < 35’3 as vour strind’)ji

WRITELN(‘enter a strindg of 8 characters ‘)3
READSTRING(1 st) 3
WRITELN(vou entered <’ sts’3 as vour string’)i

WRITELN(‘ernter a string terminated with an ENTER (carriage return) ')3
READSTRING_UNTIL(chr(13)+14+5)3

WRITELN(vou entered < s+’ as vour string’)i
END.
Characters
There is a single input procedure for single characters—READCHAR. The form of this proce-
dures is:

READCHAR (interface.select-codes character_variable)]i

The procedure is in the I/0 Library module GENERAL_1. The interface select code cannot be a
device specifier (like 701). Refer to the HP-IB section regarding bus addressing. The variable
must be a character variable. An example program follows:

PROGRAM characters (INPUT OUTPUT)

IMPORT IODECLARATIONS »
GENERAL_153
UAR ¢ : CHARS
BEGIN
REPEAT
READCHAR (1 sc) 3
WRITELNS:

WRITELN(‘vou tveped “+cs+’ which is character ‘+0ORD(c):3)13
UNTIL c=CHR(13)3
WRITELN(“done)3
END .,

Words
READWORD is the input procedure for 16-bit words. The form of this procedures is:

READWORD (interface_.select.code, inteder_variable)]i

Inputting Data

The procedure is in the I/O Library module GENERAL_1. The first parameter must be an interface
select code; it cannot be a device selector that contains addressing information (like 701). Refer to
the HP-IB section regarding bus addressing. The variable must be an integer variable. The returned
value will be in the range of —32 768 to 32 767.

The procedure has two different behaviors, depending on what type of interface it is used with.
When used with an HP 98622 GPIO interface, this procedure will read a single 16-bit quantity
from the 16 data lines on the interface. This procedure will read two consecutive bytes for all
other interface types — most significant byte first, least significant byte last. An example program
for an HP-IB interface follows:

PROGRAM words (INPUTOUTPUT) S

IMPORT IODECLARATIONS
GENERAL 13

VAR x : INTEGER

BEGIN

READWORD (12 4x) 3
WRITELN(‘the word received was 1 ‘ix:7)3
END,

Skipping Data

There are applications where you want to skip over a block of data and do not wish to store the
information. The /O Library has two procedures to support skipping over data: READUNTIL
and SKIPFOR.

The READUNTIL procedure skips over data until a match character is received. It is of the form:

READUNTIL (termination.character, device_selector)i

The SKIPFOR procedure skips over a specified number of characters. It is of the form:

SKIPFOR (sKip_counts device.selector)s

The skip count is an integer expression. Both procedures are in /O Library module
GENERAL_2.

57

58

Inputting Data

Formatted Input

The previous “‘free field” procedures are adequate for a large number of applications. There
are, however, a large number of applications that need the ‘“‘formatted’ input capability. The
I/O Library does not directly provide this capability. Formatted input is achieved with the use of
the built in procedure STRREAD.

STRREAD

The STRREAD procedure is a version of the standard Pascal procedure READ. The difference
is that STRREAD reads the character stream from a string variable, as opposed to an input file.
The form of STRREAD is as follows:

STRREAD (strins_variahle, startind_char, next_char_var,..inputlist..)

The string variable is the source for the input operation. The starting character position is an
integer expression that indicates which character in the string is the start of the data to be read.
The next character variable will contain, after the execution of STRREAD, the next available
character in the string for a successive STRREAD or other string operation. For additional
information, refer to the HP Pascal Language Reference for Series 200 Computers.

The following program is an example of how to use STRREAD to produce formatted input.

PROGRAM formatted C(INPUT,OUTPUT)

IMPORT IODECLARATIONS 4
GENERAL_Z3

TYPE color = (blue » brown s+ dreen red)i
VAR s r STRINGL1Z213

t : STRINGL 813

POS : INTEGER?

evyes : colori
BEGIN

WRITELN(‘enter B alerhabetic characters’)]i
WRITELN(“and then tvype the characters BLUE')}

READSTRING(14s5) 3

STRREAD(ss1 P05y treves)i

WRITELN(the string is ‘st and the eves are ‘seves)i

END.

Chapter

Registers

7

Introduction

There are two classes of registers available to the Pascal /O Library: hardware registers and 1/O
system registers. Hardware registers are actual registers located on the I/O cards, while I/O system
registers are maintained by the Pascal [/O system. I/O system registers are often concatenations of
bits in hardware registers, maintained and accessed by /O system routines.

The hardware registers are accessed with the low-level IOREAD_BYTE and IOREAD_WORD
functions and IOWRITE_BYTE and IOWRITE_WORD procedures. The /O system registers are
accessed with the higher-level IOSTATUS function and IOCONTROL procedure.

In most instances, it is unnecessary for the programmer to access the I/O system registers. Some
of the more common register operations are supported in high level procedures and functions.
It is best to use the high level procedures and functions when possible because these are more
easily understood and are more transportable. Refer to the chapters that deal with the specific
interface for the high level procedures and functions.

I/O System Registers

The 1/O System registers are called the status and control registers. In previous desktop computers
and in the current Series 200 HP BASIC language, these registers are accessed with the BASIC
STATUS and CONTROL statements. In the Pascal system most of the I/O system registers have the
same definitions as the BASIC system. This is only mentioned in case you already have an
understanding of the BASIC registers.

The IOSTATUS Function

A status register is read with the IOSTATUS function. To read a register, specify the interface and
the register number of interest in the parameter list. Only a single register may be examined with
each invocation of IOSTATUS.

Examples
interface 1= 123
redister = 03 { red O is card id }
i 1= I0OSTATUS(interfacesredister)s { det interface id ¥

WRITELN('bus state is ‘+I0STATUS(7:7))3 { det HP-IB bus state 1}

59

60 Registers

The IOCONTROL Procedure

A control register is written with the IDCONTROL procedure. It is necessary to specify the
interface and the register number, and the value to be written in the parameter list. Only a single
register may be modified with each invocation of IOCONTROL.

Examples
interface 1= 73 { Built-in HP-IB, }
redister 1= 33 { Redister 3 sets address, }
TOCONTROL (interfacesredister5); { Set address to 5., }
ICCONTROL (740,13 { Reset HP-IB interface, }

Common Register Definitions

The status and control registers are very interface dependent both in number and definition of
the registers. There are two registers that are defined for all except two interfaces:

e status register O (for card identification)
e control register O (to reset the interface card)

The keyboard and CRT (interface select codes 1 and 2) do not have status and control registers
implemented.

Hardware Registers

The hardware registers are accessed by the system. It is, therefore, dangerous for you to access
these registers unless you have a complete understanding of both the register definition and of the
consequences of accessing the hardware registers. Their locations and definitions are given in
subsequent chapters that describe each interface’s registers. The IOREAD_BYTE and
IOWRITE_BYTE perform an eight-bit (byte) operation on the computer backplane. The
IOREAD_WORD and IOWRITE_WORD perform a 16-bit (word) operation on the computer
backplane.

Chapter

Errors and Timeouts

8

Introduction
There are two types of events supported in the Pascal I/O Library:

e [/O Errors
o [/O Timeouts

These 1/O events are handled via the TRY/RECOVER event handling mechanism. Refer to the

Compiler chapter of the Pascal Workstation System manual for additional information on TRY/
RECOVER.

Note that timeouts are only available on handshake operations. There is no timeout facility on the
advanced transfers. Also note that the Datacomm interface control blocks use the TRY/RECOVER
mechanism.

61

62 Errors and Timeouts

Pascal Event Processing

Pascal’s event-handling mechanism is very much different from that found in BASIC or HPL on the
Series 200 computers. BASIC and HPL are interpreted languages. At the end of each program line,
there is a call to a system routine that checks for the occurrence of events. If one has occurred (and
is enabled to initiate a program branch), then the appropriate branch is taken. The Pascal Compiler
does not generate code at the end of each line to check for events. Pascal takes advantage of a
hardware feature that allows an event to escape from whatever code is currently being executed to
a previously defined event handler. An example program that uses this event handling is as follows:

$SYSPROG ON$ { enabkle orptional compiler features ¥
PROGRAM errors (INPUTOUTPUT)
VAR a : REALS

BEGIN

TRY
a 1= 13
a = a/03 { this should generate an error ¥
WRITELN(This should not det executed’)i

RECOVER { this is the event handler ¥
BEGIN

WRITELN(’I have dotten an error’)j}

WRITELN('The escare code is ‘,ESCAPECODE) S

ESCAPE(ESCAPECODE) 3 { Pass error on ¥
END 3

WRITELN('Program finished normally’)3
END.

When run, this program will generate a CRT screen similar to the following:

I hawve dotten an error
The escapre code 15 -5

error ~3: divide by zero
PC value: -444090

The error handling in Pascal depends on four language features:

e TRY

¢ RECOVER

e ESCAPECODE
e ESCAPE

These features are not in the normal Pascal language. To access these features it is necessary to turn
on a Compiler option called SYSPROG. This Compiler option enables error handling and several
other system features. Refer to the Compiler chapter of the Pascal Workstation System manual for
additional information about $SYSPROG ON§$.

TRY

TRY defines the start of a block of code that is to be handled by a following RECOVER block. This
block of code may contain anything including procedure and function calls. If any error occurs, it
will be handled by the RECOVER block, unless there is a nested TRY/RECOVER block. TRY/
RECOVER blocks may be nested to any level. The inner-most RECOVER block will receive
control.

Errors and Timeouts

If no error occurs in a TRY/RECOVER block then the next statement following the RECOVER
block is executed.

RECOVER

RECOVER defines the start of the error handling code. The RECOVER code must be a simple
statement or a BEGIN/END block.

ESCAPECODE

ESCAPECODE is an INTEGER variable that contains the error code from the last error. System
errors have negative values. User errors should have positive values.

ESCAPE

ESCAPE is a procedure that generates an error escape. It has a single INTEGER parameter. When
ESCAPE is executed it places the parameter into the ESCAPECODE variable and generates an
error. This error will be trapped by a RECOVER block, if any.

I/O Error Handling

I/O errors are just one of several error conditions that can occur in the Pascal system. Because of the
multitude of errors that can happen within device I/O, only one ESCAPECODE has been allocated
for use by the /O Library. When ESCAPECODE has the value — 26, the error was an /O error.

The /O Library uses some additional variables and functions for the various errors that it can
generate:

¢ IOESCAPECODE

e [OE_RESULT

¢ IOE_ISC

¢ IOERROR_MESSAGE

IOESCAPECODE

IOESCAPECODE is an integer constant with the value —26. This constant is compared with the
ESCAPECODE to determine if the ESCAPE was due to an I/O error. The constant
IOESCAPECODE is defined in the I/O Library Module [ODECLARATIONS.

IOE_RESULT

IOE_RESULT is an integer variable. This variable contains the specific I/O error code, if any. The
variable IOE_RESULT is defined in the I/O Library Module IODECLARATIONS. A listing of
current error codes and their messages is in the last section in this chapter. For each error code, the
I/O Library has defined a constant for that error. For example, when IOE_RESULT has the value
11, the error is that there is no firmware to support the interface card in the system. This error has a
constant defined in IODECLARATIONS called ioe_no_driver that is defined to have the decimal
value 11.

63

64 Errors and Timeouts

IOE_ISC

IOE_ISC is an integer variable. This variable contains the interface select code of the last interface to
generate an I/O error. If the error was not due to an interface problem, then IOE_ISC will contain
the value 255 (which is NO_ISC). The variable IOE_ISC is defined in the I/O Library Module
IODECLARATIONS.

IOERROR_MESSAGE

IOERROR_MESSAGE is a string function. This function has one INTEGER parameter that should
contain the /O error code IOE_RESULT. The function returns a string that is the English error
message associated with the specific error code. The string function [OERROR_MESSAGE is in the
1/0 Library Module GENERAL _3. A listing of current error codes and their messages is in the last
section in this chapter.

The following program is an example of handling an I/O error using the TRY/RECOVER mechan-
ism used with the features of the I/O Library. This program attempts to write a string out to an
HP-IB interface without first addressing the interface card as a talker.

$SYSPROG ON$ { enable optional compiler features 1}
PROGRAM io_errors (INPUTOUTPUT) S
IMPORT IODECLARATIONS.

GENERAL -1
GENERAL_Z
GENERAL .33
BEGIN
TRY
IOINITIALIZES { Put I/0 svstem into Known state

WRITESTRINGLN(7+’I am not sending address information’)}
WRITELN(This should not det executed’)3
RECOVER { this is the event handler ¥
BEGIN
WRITELN(’I have dotten an error’)i
WRITELN(‘'The escare code is '+ESCAPECODE)
IF ESCAPECODE=I0ESCAPECODE
THEN BEGIN
WRITELN('The error was an I/0 error’)i
WRITELN(IOERROR_ _MESSAGE(IOE_RESULT)»’ on isc ‘H»I0E_ISC):

END
ELSE BEGIN
ESCAPE(ESCAPECODE) 3 { Pass error on ¥
END 3
END
WRITELN('Prodram finished normally)3

END.

When run, this program will generate a CRT screen similar to the following:

I have dotten an error

The escare code 15 -Z26
The error was an I/0 error
not addressed as talker on isc 7

Program finished normally

Note that the program finished normally. The path that was executed inside the RECOVER
block did not perform an ESCAPE. Therefore, the statement immediately following the
RECOVER block is executed next.

Errors and Timeouts 65

It is important to structure your TRY/RECOVER blocks in a manner similar to the one just
shown. This is necessary because all errors go through the TRY/RECOVER mechanism. If you
do not check the cause of the error with ESCAPECODE, you might trap an error meant for
some other TRY/RECOVER or an error you did not expect.

I/O Timeouts

A timeout occurs when the handshake response from any external device takes longer than a
specified amount of time to complete. The time specified for the timeout is usually the max-
imum time that a device can be expected to take to respond to a handshake during an I/O
statement.

Setting Up Timeout Events

The SET_TIMEOUT procedure in Module GENERAL_1 has two parameters, the interface
select code and a single REAL parameter that is the time that the I/O Library will wait for an
operation to complete. This parameter is the time in seconds. The parameter can range from O
thru 8191 seconds with a resolution of .001 seconds. The default timeout value is 0, which is
interpreted by the I/O Library as a timeout period of infinity—the system will wait forever for the
operation to complete.

The timeout event is just another /O error. The timeout error has the /O error code
(IOE_RESULT) of 17 (I/O error constant ioe_timeout).

66 Errors and Timeouts

A sample program trapping timeouts follows. This program will try to send some data to a
device ten times and will then stop.

#SYSPROG ON% { enable ortional compiler features ¥
PROGRAM timeouts (INPUT.,OUTPUT)
IMPORT IODECLARATIONS,
GENERAL -1
GENERAL -2
GENERAL_33
VAR attempt : INTEGER}
success : BOOLEANS
BEGIN
IOINITIALIZES
SET_TIMEQUT(741.,0) 3 { timeout of 1 second on isc 7 ¥
attempt 1= 13
success 3= FALSES
REPEAT
TRY
WRITESTRINGLN(7Z24,'This device does not exist on the bus’)i
success = TRUES

RECOVER { this is the ewvent handler ¥
BEGIN
IF ESCAPECODE=IDESCAPECODE
THEN BEGIN
IF (IOE_RESULT = IOE_TIMEOUT) AND (IDE_ISC = 7)

THEN BEGIN
IORESET (73 { because interface is in a bad state ¥
WRITELN(timeout #’'sattempt:zZ)]
attempPt = attempt+1}

END

ELSE BEGIN

WRITELN(IDERROR-MESSAGE(IOE_RESULT)+* on isc ‘+IDE_ISC)]
ESCAPE(ESCAPECODE) 3
END 3
END
ELSE BEGIN
ESCAPE(ESCAPECODE) § { Pass error on ¥
END 3
END
UNTIL (attempt>10) 0OR success]?
WRITELN(Prodram finished’) 3
IOUNINITIALIZES { clean up interface state ¥
END.

When run, this program will generate a CRT screen similar to the following:

timeout # 1
timeout # 2
timeout # 3
timeout # 4
timeout # 5
timeout # B
timeout # 7
timeout # 8
timeout # 9

timeout #10
Prodram finished

Errors and Timeouts

I/O Errors

The following list contains the error codes in the I/O Library. The error code value is stored in
the system variable IOE_RESULT. This list also contains the text of the error message produced
by the GENERAL_3 string function IOERROR_MESSAGE. The name of the error is a constant
that is declared in the IODECLARATIONS Module. The errors from 306 through 327 are HP
98628A Datacomm interface errors.

Name Value Error Message
ioe_no_error 0 no error

ioe_no_card 1 no card at select code
ioe_not_hpib 2 interface should be hpib
ioe_not_act 3 not active controller
ioe_not_dvc 4 should be device not sc
ioe_no_space 5 no space left in buffer
ioe_no_data 6 no data left in buffer
ioe_bad_tfr 7 improper transfer attempted
joe_isc_busy 8 the select code is busy
ioe_buf_busy 9 the buffer is busy
ioe_bad_cnt 10 improper transfer count
ioe_bad_tmo 11 bad timeout value
ioe_no_driver 12 no driver for this card
ioe_no_dma 13 no dma ;
ioe_no_word 14 word operations not allowed
ioe_not_talk 15 not addressed as talker
ioe_not_lstn 16 not addressed as listener
ioe_timeout 17 a timeout has occurred
ioe_not_sctl 18 not system controller
ioe_rds_wtc 19 bad status or control
ioe_bad_sct 20 bad set/clear/test operation
ioe_crd_dwn 21 interface card is dead
ioe_eod_seen 22 end/eod has occurred
ioe_misc 23 miscellaneous - value of param error
ioe_dc_fail 306 dc interface failure
ioe_dc_usart 313 USART receive buffer overflow
ioe_dc_ovfl 314 receive buffer overflow
ioe_dc_clk 315 missing clock

ioe_dc_cts 316 CTS false too long
ioe_dc_car 317 lost carrier disconnect
ioe_dc_act 318 no activity disconnect
ioe_dc_conn 319 connection not established
ioe_dc_conf 325 bad data bits/par combination
ioe_dc_reg 326 bad status /control register
ioe_dc_rval 327 control value out of range

67

68 Errors and Timeouts

Notes

Chapter

9

Advanced Transfer Techniques

Introduction

This chapter discusses advanced transfer techniques. These transfers are intended primarily for two
main applications:

® Where the computer is much faster than the device being communicated with
® Where the computer is slower than the device being communicated with

This chapter includes discussions on buffers, serial transfers, overlap transfers and special forms of
transfers.

Buffers

Buffers are the data area where the transfer procedures read and write the data that is being
transferred. This area is actually in two pieces. One piece is the control block for the buffer. The
other is the memory where data is actually stored.

The control block is a user variable. This variable must be of the type BUF_INFO_TYPE which is
defined in the I/O Library module IODECLARATIONS. This block of information contains various
fields including a pointer to the actual data area.

The data area is not allocated when the BUF_INFO_TYPE variable is declared. The data area is
allocated at program execution time with the execution of a procedure called IOBUFFER. This
procedure is of the form:

IOBUFFER (buffer_.control.block:s size_in.bvtes)s

The size in bytes is an integer value and can be of any size that the memory in your computer can
create. The IOBUFFER procedure, at program execution time, will allocate the data area and
initialize the various pointers in the buffer control block (a variable of BUF_INFO_TYPE). IOBUF-
FER and all other I/O Library transfer procedures are in the GENERAL_4 module.

The data area that is allocated is allocated with the NEW facility. Refer to the HP Pascal Language
Reference for Series 200 Computers for more information on NEW and its related capabilities. In
particular, be careful of the MARK and RELEASE facilities since these can affect the buffer space.

69

70 Advanced Transfer Techniques

Once a buffer has been declared and allocated, it is necessary to be able to read and write the
buffer. The I/O Library, as with normal input and output, has a small number of procedures and
functions to access the buffer space. These procedures and functions are:

e BUFFER_RESET

e BUFFER_SPACE

e BUFFER_DATA

e READBUFFER

e WRITEBUFFER

e READBUFFER_STRING
e WRITEBUFFER_STRING

Buffer Control

Necessary aspects of buffer control are empty and fill pointers. When data is written into the
buffer, the fill pointer is incremented. When data is read from the buffer the empty pointer is
incremented. When these two pointers meet, there is no data in the buffer.

The procedure BUFFER_RESET puts the empty and fill pointers back to the start of the
buffer—effectively clearing it of data. The form of this procedure is:

BUFFER_RESET (buffer_.control_blocK)i

The integer function BUFFER_SPACE returns the number of bytes that are available at the end
of the buffer from the fill pointer to the end of the buffer. This function is of the form:

BUFFER.-SPACE (buffer_control_block)j;

The integer function BUFFER_DATA returns the number of bytes of data that are available in
the buffer from the empty pointer to the fill pointer. This function is of the form:

BUFFER_DATA (buffer_control_blocK)]j

Reading Buffer Data

There are two procedures that read buffer data: READBUFFER and READBUFFER_STRING.
READBUFFER reads a single character. READBUFFER_STRING reads a string. The form of
these procedures is:

READBUFFER (buffer.control_blocks character_var)j
READBUFFER_STRING (buffer_control_blocks stringd_var:
character_count)3j

The READBUFFER_STRING will read the specified number of characters from the buffer into
the string variable.

Advanced Transfer Techniques

Writing Buffer Data

There are two procedures that write buffer data: WRITEBUFFER and
WRITEBUFFER_STRING. WRITEBUFFER writes a single character.
WRITEBUFFER_STRING writes a string. The form of these procedures is:

WRITEBUFFER (buffer_control_blocks character);:
WRITEBUFFER_STRING (buffer_control_blocK,s string)i

The WRITEBUFFER_STRING will write the entire number of characters from the string ex-
pression into the buffer.

The following is an example program showing the creation and use of a buffer:

PROGRAM buffers (INPUTOUTPUT)

IMPORT IODECLARATIONS »
GENERAL_43

VAR buffer : BUF_INFO_TYPE}

i : INTEGER
c : CHARS
BEGIN

IOBUFFER(buffer,»100)3 { create a 100 character buffer 2
BUFFER_RESET(buffer)i { maKe sure it is empty ¥
FOR i:=85 TO 90 DO

WRITEBUFFER(bufferschr(i))j { pPut character data in the buf ¥
WRITEBUFFER_STRING(buffers‘hello’)i { put a string in the buffer }

WHILE BUFFER_DATA(buffer)>0 DO BEGIN
READBUFFER(buffersc)i { dump out the buffer by char ¥
WRITE(c) 3

END3F { of WHILE DO BEGIN 1}

WRITELN]

END.

This program will produce the following screen on the CRT:

ABCDEFGHIJKLMNOPQRSTUVWXYZhello

71

72 Advanced Transfer Techniques

Serial Transfers

Serial transfers are those that complete before the next Pascal line is executed. This is the
normal approach that Pascal uses in program execution. This type of transfer is useful in the
application where you have a high speed data transfer where the computer is slower than or the
same speed as the device.

The procedure that performs a data transfer to and from a buffer is the TRANSFER procedure.
It has the following form:

TRANSFER (devices transfer_.mode, direction.
buffer.control_blocK:s count)i

The “device’”” parameter is the device selector (like 12 or 701) described in previous chapters . The
“count” parameter is the number of bytes to be transferred by the procedure. The ‘‘buffer control
block” parameter is the buffer variable of type BUF_INFO_TYPE.

The ““direction” parameter is of a special type and can have two values: FROM_MEMORY and
TO_MEMORY. So a direction of FROM_MEMORY is an output transfer and TO_MEMORY is an
input transfer.

The “‘transfer mode”” parameter is also of a special type. For serial transfers it can have the values:

e SERIAL_DMA
e SERIAL_FHS
e SERIAL_FASTEST

The DMA mode specifies a direct memory access transfer. The FHS mode specifies a fast hand-
shake transfer. The FASTEST mode specifies that if DMA is installed and available for the transfer,
then it should be used, otherwise a FHS transfer will occur. Some interfaces do not support DMA
transfers (like the Datacomm interface). Those interfaces, when a FASTEST transfer is requested,
will give a FHS transfer since they cannot do DMA.

The DMA mode transfer can only transfer 1 through 65 536 bytes of data. The fast handshake
transfer can be of arbitrary size.

Advanced Transfer Techniques 73

An example program using a serial transfer to a printer is:

PROGRAM transfers (INPUT,QUTPUT)

IMPORT IODECLARATIONS »
GENERAL_43

UAR buffer : BUF_INFO_TYPE;S

isd : INTEGERS
c : CHARS
BEGIN
I0OBUFFER(buffer,100); { create a 100 character buffer 2

FOR J:=1 TO 5 DD BEGIN

BUFFER_RESET(buffer) s { make sure it is empPtv ¥
FOR i:=65 TO 90 DO

WRITEBUFFER(bufferschr(i))i { put character data in the buf 2
WRITEBUFFER(bufferschr(13))3 { Put in a carriade return ¥
WRITEBUFFER(bufferschr(10))3 { put in a line feed b

TRANSFER(701 SERIAL_FASTEST 4

FROM_MEMORY sbuffer,

huffer_data(buffer))s { send all of the data in buf ¥
WRITELN(this line will mot be printed until the transfer is done’)}

END5 { of FOR DO BEGIN X

END.

This program will produce the following on the CRT:

this line will not he Printed until the transfer is done
this line will not be pPrinted until the transfer is done
this line will not ke printed until the transfer is done
this line will not be Pprinted until the transfer is done
this line will wot be printed until the transfer is done

and this on the PRINTER:

ABCDEFGHIJKLMNOPORSTUVKWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVMWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPORSTUVMWXYZ

74

Advanced Transfer Techniques

Overlap Transfers

Serial transfers are useful for high-speed applications. The computer will not continue execu-
tion of the program until the transfer is complete. For lower speed applications, this is not
adequate. The Pascal I/O Library provides an overlap transfer mechanism. This mechanism
allows for the program to continue execution while the transfer is continuing. The overlap
transfer mechanism is identical to the serial transfer. Its form is:

TRANSFER (devices transfer_mode, direction:
buffer_control_block, count)s

All of the parameters are the same as for other types of transfers, with the exception of the
“transfer_mode”” parameter. For overlap transfers, the parameter can have the following values:

Transfer Mode Value | Meaning

OVERLAP_INTR Interrupt transfer

OVERLAP_DMA dma transfer

OVERLAP_FHS Interrupt on first byte fast handshake on rest
OVERLAP_FASTEST dma if available, else use overlap_fhs
OVERLAP dma if available, else use overlap_intr

The overlap fast handshake mode has also been called burst mode, because it does not
consume any CPU time until the first byte is transferred. The overlap mode is provided so that if
your application requires a data transfer to execute concurrently with the program execution,
then you will get the most efficient method available.

The DMA mode transfer can only transfer 1 through 65 536 bytes of data. The other transfer
modes can be of arbitrary size.

When is the Transfer Finished?
There are two BOOLEAN functions which can tell you if a transfer is still occurring between a
buffer and an interface. These are:

BUFFER_BUSY (buffer_control_block)}

and

ISC_BUSY (interface_select_code)s

Either function returns TRUE if the transfer is still active.

Advanced Transfer Techniques

The following program is an example of an overlap transfer. This program does not do anything

useful with the spare time available to it.

PROGRAM overlared (INPUT,OUTPUT);

IMPORT IODECLARATIONS s
GENERAL .45

YAR buffer : BUF_INFO_TYPE:

isd : INTEGERS
c : CHARS
BEGIN
I0BUFFER(buffer 1001 { create a 100 character buffer 3

FOR J:=1 TO 5 DO BEGIN

WHILE BUFFER_ACTIVE(buffer) DO

BEGIN
WRITELN(‘waiting for transfer to finish’)3i
END 3
BUFFER_RESET(buffer)s; { make sure 1t 15 empPty ¥

FOR i:=65 TO 90 DO
WRITEBUFFER(bufferschr(i))si { Put character data
H
H

in the buf

WRITEBUFFER(bufferschr(13)) { Put in a carriade return ¥
WRITEBUFFER(bufferschr(10)) { Put in a line feed ¥
TRANSFER(701 yOVERLAP_INTR

FROM_MEMORY sbuffer:

buffer_data(buffer))i { send all of the data in buf ¥

END3 { of FOR DO BEGIN 1}

END.

This program will produce the following on the PRINTER:

ABCDEFGHIJKLMNOPQRSTUVMWXYZ
ABCDEFGHIJKLMNOPQRSTUVMWXYZ
ABCDEFGHIJKLMNOPQRSTUVKWXYZ
ABCDEFGHIJKLMNOPQRSTUVMWXYZ
ABCDEFGHIJKLMNOPQRSTUVKWXYZ

75

76 Advanced Transfer Techniques

Special Transfers

In addition to the block transfers that were described above, there are three additional versions
of transfer. They are:

e word transfers
® match character transfers

o END condition transfers

Word Transfer

The GPIO interface can support 16 bit data transfers. The TRANSFER_WORD procedure
simultaneously transfers 2 bytes over the GPIO interface. The form of this procedure is:

TRANSFER_WORD (devices transfer_mode, direction:
buffer.control_blocks count) 3

All of the parameters are the same with the exception of the count which now contains the
16-bit word count to be transferred. All the transfer types, overlap and serial, are the same as a
regular transfer.

Match Character Transfer

This transfer procedure will transfer data into the computer until a match character is found.
Note that this transfer, called TRANSFER_UNTIL, is an input only transfer. The form of the
procedure is:

TRANSFER_UNTIL (termination_chars devices transfer_mode.
directions buffer_control_block)}i

The termination character is the match character that will stop the transfer. The transfer will also
stop when the there is no more room in the buffer. All of the other parameters are the same.
Most of the transfer types, overlap and serial. are the same as a regular transfer - except that
DMA transfers are not allowed. Note that there is NO count parameter. The direction must be
TO_MEMORY.

END Condition Transfer

This transfer procedure will transfer data into the computer until an interface condition occurs
or it will transfer data out with the last data byte being sent with an interface condition. This
transfer is TRANSFER_END and has the form:

TRANSFER _END (devices transfer_mode, direction:
buffer_control_blocK)}

All of the parameters are the same. Note that there is NO count. The transfer will send all the
available data followed by the condition or will receive data until the end condition occurs or
the buffer fills up. All the transfer types, overlap and serial, are the same as a regular transfer.
An example of an end condition is the EOI condition on HP-IB.

77

Chapter

10

The HP-IB Interface

Introduction

This chapter describes the techniques necessary for programming the HP-IB interface. Many of the
elementary concepts have been discussed in previous chapters. This chapter describes the specific
details of how this interface works and how it is used to communicate with and control systems
consisting of various HP-IB devices.

The HP-IB (Hewlett-Packard Interface Bus), commonly called the “bus”, provides compatibility
between the computer and external devices conforming to the IEEE 488-1978 standard. Electrical,
mechanical, and timing compatibility requirements are all satisfied by this interface.

Logic and Shield

/J7 Grounds
—

Data
8 >
HP-1B
Interface
Data and Handshake & | shielded Cable
ata an 3 3 to Device(s)
Control Hardware S
Backplane and S @
Connector Firmware Control L:)
< 5 a
n
[aV]

The HP-IB interface is both easy to use and allows great flexibility in communicating data and
control information between the computer and external devices. It is one of the easiest methods to
connect more than one device to the same interface.

78 The HP-IB Interface

Initial Installation

Refer to the HP-IB Installation Note for information about setting the switches and installing an
external HP-IB interface. Once the interface has been properly installed, you can verify that the
switch settings are what you intended by running the following program. The defaults of the
internal HP-IB interface can also be checked with the program. The results are displayed on the
CRT.

PROGRAM check_hpib (INPUT » OUTPUT)3
IMPORT IODECLARATIONS
HPIB_13
VAR isc : TYPE_ISCS
BEGIN
WRITELN(Evnter HP-IB interface select code’)3}
READLN(isc) 3

IF ISC.TABLE[isc1.CARD_TYPE < HPIB_CARD
THEN BEGIN
WRITELN{ The interface at 1sc ‘sisci2s+’ 1s not an HP-IB interface’)]}
END
ELSE BEGIN

WRITELN(The interface at isc “siseci2:+’ is an HP-IB interface)}

IF ISC.TABLE[iscl1,.CARD_ID = HP9BBZ4
THEN WRITELNC and is an opPtionals external interface’)
ELSE WRITELNC(’ and is the standard, built in interface’) i

WRITE(' The interface is)3
IF NOT SYSTEM._CONTROLLER(isc) THEN WRITE('NOT 73
WRITELN(“the sv¥stem controller’)3

WRITE('The interface has a bus address of ’“smv_address(isc):2) 3

END3 { of IF THEN/ELSE 1}
END.

The terms system controller and bus address are described in the following sections. The
internal HP-IB has a jumper that is set at the factory to make it a system controller. This jumper
is located below the lowest interface slot at the computer backplane. The lowest interface (or
memory board) in the backplane must be removed to access this jumper. If the jumper in the
center of the clear plastic cover is placed on the middle and right most pins, as seen from the
rear of the computer, the computer is set to be a system controller. If the jumper is on the
middle and leftmost pins, then the computer is not system controller and will have a bus address
of 20.

The HP-IB Interface 79

Communicating with Devices

This section describes programming techniques used to output data to and enter data from
HP-IB devices. General bus operation is also briefly described.

HP-IB Device Selectors

Since the HP-IB allows the interconnection of several devices, each device must have a means
of being uniquely accessed. Specifying just the interface select code of the HP-IB interface
through which a device is connected is not sufficient to identify that device on the bus.

Each device connected to the bus has an address by which it can be identified. This address
must be unique to allow individual access of each device. Most HP-IB devices have a set of
switches that are used to set its address. Those that do not have switches, like the built in HP-IB
interface in the computer, have a pre-set bus address. So, when a particular HP-IB device is to
be accessed, it must be identified with both its interface and its bus address.

The interface select code is the first part of an HP-IB device selector. The interface select code of the
internal HP-IB is 7. The second part of an HP-IB device selector is the device’s bus address. This
address is the range of 0 through 30. As described in the Directing Data Flow chapter, interface 7,
device address 17 would have a device selector of 717. Interface 10, device address 2 would have a
device selector of 1002.

Moving Data Through the HP-IB

Data is output from and entered into the computer through the output and input procedures
described in earlier chapters. All the information in these chapters applies directly to the HP-IB
interface. The advanced transfer techniques described in the preceding chapter also apply to the
HP-IB interface.

Example

PROGRAM hpib_io (INPUT.0UTPUT)

IMPORT GENERAL_Z3
UAR a : REALS

i : INTEGER
BEGIN

WRITESTRINGLN(701) 'message to a printer’)i
WRITESTRINGLN(7Z24, ‘RITINIS)3
FOR i:= 1 TO 100 DO BEGIN
READNUMBER (724ya) 3
WRITELN{ the reading from the voltmeter is ‘sa:B:2)3
ENDi { of FOR DO BEGIN 1}
END .

General Structure of the HP-IB

Communications through the HP-IB are made according to a precisely defined set of rules.
These rules help to ensure that only orderly communication may take place on the bus. For
conceptual purposes, the organization of the HP-IB can be compared to that of a committee. A
committee has certain ‘‘rules of order’’ that govern the manner in which business is to be
conducted. For the HP-IB, these rules of order are the IEEE 488-1978 standard.

80 The HP-IB Interface

One member, designated the “‘committee chairman,” is set apart for the purpose of conducting
communications between members during the meetings. This chairman is responsible for over-
seeing the actions of the committee and generally enforces the rules of order to ensure the
proper conduct of business. If the committee chairman cannot attend a meeting, he designates
some other member to be “‘acting chairman.”

On the HP-IB, the system controller corresponds to the committee chairman. The system
controller is generally designated by setting a switch on the interface and cannot be changed
under program control. However. it is possible to designate an ‘‘acting chairman’’ on the
HP-IB. On the HP-IB, this device is called the active controller, and may be any device
capable of directing HP-IB activities, such as a desktop computer.

When the system controller is first turned on or reset, it assumes the role of active controller.
Thus, only one device can be designated system controller. These responsibilities may be
subsequently passed to another device while the system controller tends to other business. This
ability to pass control allows more than one computer to be connected to the HP-IB at the same
time.

In a committee, only one person at a time may speak. It is the chairman’s responsibility to
“recognize’” which one member is to speak. Usually, all committee members present always
listen; however, this is not always the case on the HP-IB. One of the most powerful features of
the bus is the ability to selectively send data to individual (or groups of) devices.

Imagine slow note takers and fast note takers on the committee. Suppose that the speaker is
allowed to talk no faster than the slowest note taker can write. This would guarantee that
everybody gets the full set of notes and that no one misses any information. However, requiring
all presentations to go at that slow pace certainly imposes a restriction on our committee,
especially if the slow note takers do not need the information. Now, if the chairman knows
which presentations are not important to the slow note takers, he can direct them to put away
their notes for those presentations. That way. the speaker and the fast note taker(s) can cover
more items in less time.

A similar situation may exist on the HP-IB. Suppose that a printer and a flexible disc are
connected to the bus. Both devices do not need to listen to all data messages sent through the
bus. Also, if all the data transfers must be slow enough for the printer to keep up, saving a
program on the disc would take as long as listing the program on the printer. That would
certainly not be a very effective use of the speed of the disc drive if it was the only device to
receive the data. Instead, by “‘unlistening’” the printer whenever it does not need to receive a
data message, the computer can save a program as fast as the disc can accept it.

During a committee meeting, the current chairman is responsible for telling the committee
which member is to be the talker and which is (are) to be the listener(s). Before these assign-
ments are given, he must get the attention of all members. The talker and listener(s) are then
designated, and the next data message is presented to the listener(s) by the talker. When the
talker has finished the message, the designation process may be repeated.

The HP-IB Interface 81

On the HP-IB, the active controller takes similar action. When talker and listener(s) are to be
designated, the attention signal line (ATN) is asserted while the talker and listener(s) are being
addressed. ATN is then cleared, signaling that those devices not addressed to listen may ignore
all subsequent data messages. Thus, the ATN line separates data from commands; com-
mands are accompanied by the ATN line being true, while data messages are sent with the ATN
line false.

On the HP-IB, devices are addressed to talk and addressed to listen in the following orderly
manner. The active controller first sends a single command which causes all devices to unlisten.
The talker’s address is then sent, followed by the address(s) of the listener(s). After all listeners
have been addressed, the data can be sent from the talker to the listener(s). Only device(s)
addressed to listen accept any data that is sent through the bus (until the bus is reconfigured by
subsequent addressing commands).

The data transfer, or data message, allows for the exchange of information between devices on
the HP-IB. Our committee conducts business by exchanging ideas and information between
the speaker and those listening to his presentation. On the HP-IB, data is transferred from the
active talker to the active listener(s) at a rate determined by the slowest active listener on
the bus. This restriction on the transfer rate is necessary to ensure that no data is lost by any
device addressed to listen. The handshake used to transfer each data byte ensures that all data
output by the talker is received by all active listeners.

Examples of Bus Sequences

Most data transfers through the HP-IB involve a talker and only one listener. For instance,
when an input or output procedure is used to send data to or from a device, the following
sequence of commands is sent through the bus.

WRITESTRINGLN(701,'Data’) s

1. The unlisten command is sent.

2. The talker’s address is sent (the computer’s talk address).

3. The listener’s address is sent (address 01).

4. The data bytes “D”’,*a”,*'t”’, ‘a”’,carriage return and line feed are sent.
READSTRING(724 yMessade) 3

1. The unlisten command is sent.

2. The talker’s address is sent (talk address for device 24).

3. The listener’s address is sent (the computer listen address).

4. The data bytes are transferred.

82 The HP-IB Interface

Addressing Multiple Listeners

HP-IB allows more than one device to listen as data is sent through the bus. The Pascal I/O Library
supports this capability in the following way. It is necessary for you to address the bus yourself. The
procedures to do this addressing exist in the module HPIB_2. The following example shows how to
address the computer as a talker and several devices as listeners.

UNLISTEN(isc)

TALK (isc M _ADDRESS(isc)
LISTEN (iscraddress.l)?
LISTEN (1sc'address__)

LISTEN (iscraddress_3)
NRITESTRINGLN(iSCy‘ThiS messade sent to three listeners.,’)i

An example where the computer is one of several devices listening to some incoming data is :

UNLISTEN(isc)

TALK (1507address_1)

LISTEN (iscsMY_ADDRESS(isc))i
LISTEN (iscraddress_2):
LISTEN (iscraddress.3):
READSTRING(iscsstr) s

The UNLISTEN, TALK and LISTEN procedures are in the 1/O Library module HPIB_2.

Addressing a Non-Active Controller

The bus standard states that a non-active controller cannot perform any bus addressing. When
only the interface select code is specified in an input or output procedure, no bus addressing
occurs.

If the computer currently is not the active controller, it can still act as a talker or listener,
provided it has been previously addressed. So, if an input or output procedure is executed
while the computer is not an active controller, the computer first determines whether or not it is
an active talker or listener. If not addressed to talk or listen, the computer waits until it is
properly addressed and then performs the operation. Examples of non-controller [/O are:

READCHAR(74c) 3 { If not a listeners then wait until addressed to listen, }
WRITESTRINGLN(7'This messade sent after I‘m addressed to talk,’)s
READSTRING_UNTIL(CHR{13)+7ss5tr)3

If the computer is the active controller, it proceeds with the data transfer without addressing
which devices are talker and listener(s). If the bus has not been configured properly (the
controller not being addressed as a talker or listener), an error is reported. The escapecode is
—26 (I/O) and the io error is 15 or 16 (not addressed as a talker or listener). The following
program shows a typical use of this non-addressing approach.

WRITESTRINGLN(7054+/'This does to device 3 on isc 7,701
LISTEN(741)3
WRITESTRINGLN(7'This does to devices 1 and 5,')3
LISTEN({7,20)3
FOR 1 := 1 TO 10 DO
WRITESTRINGLN (74+'These ten lines do0 to devices 1y 5y and 20,7)3

The HP-IB Interface

Pascal Control of HP-IB

The Pascal I/O Library has a number of procedures and functions for controlling the HP-IB. You
have already seen a number of them in the preceding examples. These capabilities are broken
down into two major groups — status and control.

HP-IB Status

Normal use of HP-IB requires three main status facilities:

e What is my address?
® Am | system controller?
® Am | active controller?

The function MY_ADDRESS returns the current device address of the specified interface. This
integer function is in module HPIB_1. It has the form:

MY _ADDRESS (interface_select_code }3

The function SYSTEM_CONTROLLER returns a TRUE or FALSE depending on whether or not
the interface is set to be the system controller. This boolean function is in module HPIB_1, and has
the form:

SYSTEM_CONTROLLER (interface_select_code)3

The function ACTIVE_CONTROLLER returns a TRUE or FALSE depending on whether or not
the interface is currently the active controller. This boolean function is in module HPIB_1, and has
the form:

ACTIVE_CONTROLLER (interface.select._code)3
HP-IB Control

Normal use of HP-IB requires five main control facilities:

e Send untalk

® Send unlisten

® Send a talk command

® Send a listen command

® Send a secondary command

The UNTALK and UNLISTEN procedures send the appropriate command on the bus. These
procedures are in the HPIB_2 module. The interface must be active controller for them to
complete. They have the form:

UNTALK { interface_select_code)1

UNLISTEN (interface_select_code)3

83

84 The HP-IB Interface

The TALK, LISTEN and SECONDARY commands send a talk, listen or secondary command.
These procedures are in the HPIB_2 module. The interface must be an active controller form
for them to complete. They have the form:

TALK (interface_select_code » address)3
LISTEN (interface_select_code » address 3
SECONDARY { interface_select_code + address)3

General Bus Management

The HP-IB standard provides several mechanisms that allow managing the bus and the devices
on the bus. Here is a summary of the procedures that invoke these control mechanisms.

ABORT_HPIB is used to abruptly terminate all bus activity and reset all devices to power-on
states.

CLEAR is used to set all (or only selected) devices to a pre-defined, device-dependent state.
L.OCAL is used to return all (or selected) devices to local (front-panel) control.
LOCAL_LOCKOUT is used to disable all devices’ front-panel controls.

PASS_CONTROL is used to pass active control to another device on the bus.

PPOLL is used to perform a parallel poll on all devices (which are configured and capable of
responding).

PPOLL_CONFIGURE is used to setup the parallel poll response of a particular device.

PPOLL_UNCONF IGURE is used to disable the parallel poll response of a device (or all devices
on an interface).

REMOTE is used to put all (or selected) devices into their device-dependent. remote modes.
SEND_COMMAND is used to manage the bus by sending explicit command messages.

SPOLL is used to perform a serial poll of the specified device (which must be capable of
responding).

TRIGGER is used to send the trigger message to a device (or selected group of devices).

These procedures (and functions) are described in the following discussion. However, the
actions that a device takes upon receiving each of the above commands are, in general,
different for each device. Refer to a particular device’s manuals to determine how it will
respond. Detailed descriptions of the actual sequence of bus messages invoked by these state-
ments are contained in ‘‘Advanced Bus Management’’ near the end of this chapter.

Remote Control of Devices

Most HP-IB devices can be controlled either from the front panel or from the bus. If the device’s
front-panel controls are currently functional, it is in the Local state. If it is being controlled
through the HP-IB, it is in the Remote state. Pressing the front-panel “‘Local” key will return the
device to Local (front-panel) control, unless the device is in the Local Lockout state (described
in a subsequent discussion). '

The HP-IB Interface 85

The Remote message is automatically sent to all devices whenver the system controller is
powered on, reset, or sends the Abort message. A device also enters the Remote state auto-
matically whenever it is addressed. The REMOTE procedure also outputs the Remote message,
which causes all (or specified) devices on the bus to change from local control to remote
control. The interface must be configured as the system controller to execute the REMOTE
procedure. The REMOTE procedure is in module HPIB_2.

Examples
REMOTE (7) 3
REMOTE (700) 3

Locking Out Local Control

The Local Lockout message effectively locks out the ‘‘local’” switch present on most HP-IB
device front panels, preventing a device’s user from interfering with system operations by
pressing buttons and thereby maintaining system integrity. As long as Local Lockout is in effect,
no bus device can be returned to local control from its front panel.

The Local Lockout message is sent by executing the LOCAL_LOCKOUT procedure. This message
is sent to all devices on the specified bus, and it can only be sent by the interface when it is the active
controller. This procedure is in module HPIB_2.

Examples

LOCAL_LOCKDUT (7) 3

The Local Lockout message is sent by executing the LOCAL_LOCKOUT procedure. This
message is sent to all devices on the specified HP-IB interface, and it can only be sent by the
interface when it is the active controller. This procedure is in module HPIB_2.

Enabling Local Control

During system operation, it may be necessary for an operator to interact with one or more devices.
For instance, an operator might need to work from the front panel to make special tests or to
troubleshoot. And, in general, it is good systems practice to return all devices to local control upon
conclusion of remote-control operations. Executing the LOCAL procedure returns the specified
devices to local (front-panel) control. The interface must be the active controller to send the
LOCAL message. This procedure is in module HPIB_2.

Examples

LOCAL (7)) 3

LOCAL (Bol) 3
If primary addressing is specified, the Go-to-Local message is sent only to the specified device(s).
However, if only the interface select code is specified, the Local message is sent to all devices on the
specified HP-IB interface and any previous Local Lockout message (which is still in effect) is

automatically cleared. The interface must be the system controller to send the Local message (by
specifying only the interface select code).

86 The HP-IB Interface

Triggering HP-IB Devices

The TRIGGER procedure sends a Trigger message from the controller to a selected device or
group of devices. The purpose of the Trigger message is to initiate some device-dependent
action; for example, it can be used to trigger a digital voltmeter to perform its measurement
cycle. Because the response of a device to a Trigger Message is strictly device-dependent,
neither the Trigger message nor the interface indicates what action is initiated by the device.
This procedure is in module HPIB_2.

Examples
TRIGGER (73 3
TRIGGER (707) 3

Specifying only the interface select code outputs a Trigger message to all devices currently
addressed to listen on the bus. Including device addresses in the statement triggers only those
devices addressed by the statement.

Clearing HP-IB Devices

The CLEAR procedure provides a means of ‘‘initializing”” a device to its predefined, device-
dependent state. When the CLEAR procedure is executed, the Clear message is sent either to
all devices or to the specified device, depending on the information contained within the device
selector. If only the interface select code is specified, all devices on the specified HP-IB interface
are cleared. If primary-address information is specified, the Clear message is sent only to the
specified device. Only the active controller can send the Clear message. This procedure is in
module HPIB_2.

Examples
CLEAR (7)) 3

CLEAR (700) 3

Aborting Bus Activity

The ABORT_HPIB procedure may be used to terminate all activity on the bus and return all the
HP-IB interfaces of all devices to a reset (or power-on) condition. Whether this affects other modes
of the device depends on the device itself. The interface must be either the active or the system
controller to perform this function. If the system controller (which is not the current active controller)
executes this statement, it regains active control of the bus. This procedure is in module HPIB_2.
Only the interface select code may be specified; device selectors which contain primary-
addressing information (such as 724) may not be used. This procedure is in module HPIB_2.

Examples

ABORT.HPIB (7) 3

The HP-IB Interface 87

Passing Control

The PASS_CONTROL procedure will pass current active control to another device on the bus.
The interface must be active controller. This procedure is in module HPIB_2.

Examples
PASS_CONTROL (720) 3

Polling HP-IB Devices

The parallel poll is the fastest means of gathering device status when several devices are
connected to the bus. Each device (with this capability) can be programmed to respond with
one bit of status when parallel polled, making it possible to obtain the status of several devices
in one operation. If a device responds affirmatively to a parallel poll, more information as to its
specific status can be obtained by conducting a serial poll of the device.

Configuring Parallel Poll Responses

Certain devices can be remotely programmed by the active controller to respond to a parallel
poll. A device which is currently configured for a parallel poll responds to the poll by placing its
current status on one of the bus data lines. The logic sense of the response and the data-bit
number can be programmed by the PPOLL_CONFIGURE procedure. If more than one device
is to respond on a single bit, each device must be configured with a separate PPOLL_CONFI-
GURE procedure. This procedure is in module HPIB_2.

Note

Use of PPOLL_CONFIGURE may interfere with the Pascal Oper-
ating System, especially if an external disk is being used. Be very
careful.

Example

PPOLL_CONFIGURE (705 :masK) 3
The value of the mask (any numeric expression can be specified) is first rounded and then used
to configure the device’s parallel response. The least significant 3 bits (bits O through 2) of the
expression are used to determine which data line the device is to respond on (place its status

on). Bit 3 specifies the “‘true’ state of the parallel poll response bit of the device. A value of O
implies that the device’s response is 0 when its status-bit message is true.

Example

The following statement configures device at address 01 on interface select code 7 to respond
by placing a 0 on bit 4 when its status response is “‘true’’.

PPOLL_CONFIGURE (701.4) 3

88 The HP-IB Interface

Conducting a Parallel Poll

The PPOLL function returns a single byte containing up to 8 status bit messages of all devices on
the bus capable of responding to the poll. Each bit returned by the function corresponds to the
status bit of the device(s) configured to respond to the parallel poll. (Recall that one or more devices
can respond on a single line.) The PPOLL function can only be executed on an interface that is
currently the active controller. This function is in module HPIB_3.

Example
Response:=PPOLL(7) 3}
Disabling Parallel Poll Responses

The PPOLL_UNCONFIGURE procedure gives the interface (as active controller) the capability of
disabling the parallel poll responses of one or more devices on the bus.

Note

Use of PPOLL_UNCONFIGURE may interfere with the Pascal Oper-
ating System, especially if an external disk is being used. Be very
careful.

Examples

The following statement disables device 5 only.
PPOLL_UNCONFIGURE (7035) 3

This statement disables all devices on interface select code 8 from responding to a parallel poll.
PPOLL.UNCONFIGURE (B) 3

If no primary addressing is specified, all bus devices are disabled from responding to a parallel
poll. If primary addressing is specified, only the specified devices (which have the parallel poll
configure capability) are disabled.

Conducting a Serial Poll

A sequential poll of individual devices on the bus is known as a serial poll. One entire byte of
status is returned by the specified device in response to a serial poll. This byte is called the
Status Byte message and, depending on the device, may indicate an overload, a request for
service, or a printer being out of paper. The particular response of each device depends on the
device.

The SPOLL function performs a serial poll of the specified device; the interface must be the active
controller. This function is in module HPIB_3.

Examples

Response:=SPOLL(724) 3

The HP-IB Interface

HP-IB Interface Conditions

The HP-IB interface can be in various states at various times. It is desirable for the programmer
to know about this state information. The major conditions of interest are:

e [s a device requesting service?
e Am | a talker?
e Am [a listener?

e What remote/local state am 1 in?

These conditions are supported by the following I/O Library functions in the HPIB_3 module.
All of these functions are boolean functions and will return an appropriate TRUE or FALSE
indication depending of the condition state.

function meaning

REQUESTED (interface.select_code) Is SRQ asserted?
TALKER (interface_select_code Am [a talker?
LISTENER { interface_select_code) Am | a listener?
REMOTED (interface_select_code) Is REN asserted?
LOCKED_OUT (interface.select_code) Am | in a locked out state?

The REQUESTED function requires that the interface be active controller. The REMOTED
function requires that the interface not be system controller. The LOCKED_OUT function
requires that the interface not be active controller. An example program segment follows.

WHILE REQUESTED(isc) DO
FOR i:=0 TO 7 DO BEGIN
IF BIT_SET(SPOLL(isc*100+1),6)

THEN WRITELN('device
{ of FOR DO BEGIN X

END 3

i

+1s

* requesting seruvice ‘)

89

90 The HP-IB Interface

HP-IB Control Lines

Device A < Data Bus
(8 Lines)
Able te talk. Q\
listen, and >
control
(e.g.
calculator)
Device B < Data Byte
Transfer
Able to talk N Control
and listen
es.)
multimeter)
General
Interface
Device C < (T Management
Only able to
listen >
(e.g., signal
generator)
Device D
Only able to
talk
(e.g., counter)
_:} DIO1.8
DAV
NRFD
NDAC
IFC
ATN
SRQ
REN
EOI

Handshake Lines

The preceding figure shows the names given to the eight control lines that make up the HP-IB.
Three of these lines are designated as the ‘*handshake’ lines and are used to control the timing
of data byte exchanges so that the talker does not get ahead of the listener(s). The three
handshake lines are as follows.

DAV Data Valid
NRFD Not Ready for Data
NDAC Not Data Accepted

The HP-IB Interface 91

The HP-IB interlocking handshake uses the lines as follows. All devices currently designated
as active listeners would indicate when they are ready for data by using the NRFD line. A device
not ready would pull this line low (true) to signal that it is not ready for data, while any device
that is ready would let the line float high. Since an active low overrides a passive high, this line
will stay low until all active listeners are ready for data.

When the talker senses that all devices are ready, it places the next data byte on the data lines
and then pulls DAV low (true). This tells the listeners that the information on the data lines is
valid and that they may read it. Each listener then accepts the data and lets the NDAC line float
high (false). As with NRFD, only when all listeners have let NDAC go high will the talker sense
that all listeners have read the data. It can then float DAV (let it go high) and start the entire
sequence over again for the next byte of data.

The Attention Line (ATN)

Command messages are encoded on the data lines as 7-bit ASCII characters, and are distin-
guished from normal data characters by the logic state of the attention line (ATN). That is, when
ATN is false, the states of the data lines are interpreted as data. When ATN is true, the data
lines are interpreted as commands. The set of 128 ASCII characters that can be placed on the
data lines during this ATN-true mode are divided into four classes by the states of data lines
DIO6 and DIO7. These classes of commands are shown in a table in the section called “‘Adv-
anced Bus Management’’.

The Interface Clear Line (IFC)

Only the system controller can set the IFC line true. By asserting [FC, all bus activity is uncon-
ditionally terminated, the system controller regains the capability of active controller (if it has
been passed to another device), and any current talker and listeners become unaddressed.
Normally, this line is only used to terminate all current operations, or to allow the system
controller to regain control of the bus. It overrides any other activity that is currently taking
place on the bus.

The Remote Enable Line (REN)

This line is used to allow instruments on the bus to be programmed remotely by the active
controller. Any device that is addressed to listen while REN is true is placed in the Remote mode
of operation.

The End or Identify Line (EOI)

Normally, data messages sent over the HP-IB are sent using the standard ASCII code and are
terminated by the ASCII line-feed character, CHR(10). However, certain devices may wish to
send blocks of information that contain data bytes which have the bit pattern of the line-feed
character but which are actually part of the data message. Thus, no bit pattern can be desig-
nated as a terminating character, since it could occur anywhere in the data stream. For this
reason, the EOI line is used to mark the end of the data message.

92 The HP-IB Interface

The EOI line is not directly supported by the input and output procedures. It is supported in
advanced transfers by the TRANSFER_END procedure.

The 1/O Library does provide access to the EOl line at a lower level. The state of the EOI line
after the last byte read is stored in the system and can be viewed with the END_SET boolean
function which is module HPIB_1. An example of this function is:

UNLISTEN(T) 3
TALK (7,200 3
LISTEN(7 +MY_ADDRESS(711) 3
REPEAT

FEADCHAR(7,cli11) 3
UNTIL END_SET(7)3

The /O Library also provides a facility for setting the EOI line with a byte to be sent. This is
provided with the procedure SET_HPIB which is in module HPIB_0. An example use of this
procedure is:

UNLISTEN(7) 3

TALK (7MY _ADDRESSE(71)) 3

LISTEN(7+11)3

FOR i:z=1 TO STRLEN(str)-1 DO WRITECHAR(7,strlil)}
SET.HPIB(7,EQ0I_LINE) 3

WRITECHAR(7 +»str[STRLENTD) §

After the character output occurs, the EOI line will be set false automatically.

The Service Request Line (SRQ)

The active controller is always in charge of the order of events that occur on the HP-IB. If a
device on the bus needs the controller’s help, it can set the service request line true. This line
sends a request, not a demand, and it is up to the controller to choose when and how it will
service that device. The REQUESTED function tells the controller whether it is being requested.
The procedure to request the service is the REQUEST_SERVICE procedure in the module
HPIB_3. This module is of the form:

REQUEST_SERVICE (interface_select_code » response_byte)3

The response byte is an integer value in the range of 0 through 255. If bit 6 of this byte is set, the
SRQ line will be asserted by this interface. If bit 6 is not set, then this device will not assert the
SRQ line. The interface must not be active controller to request service.

Determining Bus-Line States

IOSTATUS register 7 contains the current states of all bus hardware lines. Reading this register
returns the states of these lines.

bus_lines 3= IOBTATUS(7.:7)3

The HP-IB Interface 93

Status Register 7

Most significant Bit

Bus Control and Data Lines
Least Significant Bit

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
ATN DAV NDAC* NRFD* EOI SRQ** IFC REN
True True True True True True True True
Value = Value = Value = Value = Value = Value = Value = Value =
—32768 16 384 8192 4096 2048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DI04 DIO3 DIO2 DIO1
Value = 128| Value = 64 | Value =32 | Value=16 | Value=8 | Value=4 | Value=2 | Value =1
* Only if addressed to TALK, else not valid.
** Only if Active Controller, else not valid.
Note

Due to the way the bi-directional buffers work, NDAC and NRFD are
not accurately read by this [IOSTATUS function unless the interface
is currently addressed to talk. Also, SRQ is not accurately shown
unless the interface is currently the active controller.

94 The HP-IB Interface

Advanced Bus Management

Bus communication involves both sending data to devices and sending commands to devices
and the interface itself. ‘‘General Structure of the HP-IB’ stated that this communication must
be made in an orderly fashion and presented a brief sketch of the differences between data and
commands. However, most of the bus operations described so far in this chapter involve
sequences of commands and/or data which are sent automatically by the computer when
HP-IB statements are executed. This section describes both the commands and data sent by
HP-IB statements and how to construct your own, custom bus sequences.

The Message Concept

The main purpose of the bus is to send information between two (or more) devices. These
quantities of information sent from talker to listener(s) can be thought of as messages. Howev-
er, before data can be sent through the bus, it must be properly configured. A sequence of
commands is generally sent before the data to inform bus devices which is to send and which is
(or are) to listen to the subsequent message(s). These commands can also be thought of as
messages.

Most bus messages are transmitted by sending a byte (or sequence of bytes) with numeric
values of 0 through 255 through the bus data lines. When the Attention line (ATN) is true, these
bytes are considered commands; when ATN is false, they are interpreted as data. Bus com-
mand groups and their ASCII characters and codes are shown in “Bus Commands and
Codes’.

Types of Bus Messages

The messages can be classified into twelve types. This computer is capable of implementing all
twelve types of interface messages. The following list describes each type of message.

1. A Data message consists of information which is sent from the talker to the listener(s)
through the bus data lines.

2. The Trigger message causes the listening device(s) to initiate device-dependent action(s).

3. The Clear message causes either the listening device(s) or all of the devices on the bus to
return to their device-dependent ‘‘clear’” states.

4. The Remote message causes listening devices to change to remote program control when
addressed to listen.

5. The Local message clears the Remote message from the listening device(s) and returns
the device(s) to local front-panel control.

6. The Local Lockout message disables a device’s front-panel controls. preventing a de-
vice’s operator from manually interfering with remote program control.

7. The Clear Lockout/Local message causes all devices on the bus to be removed from
Local Lockout and to revert to the Local state. This message also clears the Remote
message from all devices on the bus.

8. The Service Request message can be sent by a device at any time to signify that the
device needs to interact with the the active controller. This message is cleared by sending
the device’s Status Byte message, if the device no longer requires service.

The HP-IB Interface 95

9. A Status Byte message is a byte that represents the status of a single device on the bus.
This byte is sent in response to a serial poll performed by the active controller. Bit 6
indicates whether the device is sending the Service Request message, and the remaining
bits indicate other operational conditions of the device.

10. A Status Bit message is a single bit of device-dependent status. Since more than one
device can respond on the same line, this Status Bit may be logically combined and/or
concatenated with Status Bit messages from many devices. Status Bit messages are
returned in response to a parallel poll conducted by the active controller.

11. The Pass Control message transfers the bus management responsibilities from the active
controller to another controller.

12. The Abort message is sent by the system controller to assume control of the bus uncon-
ditionally from the active controller. This message terminates all bus communications,
but is not the same as the Clear message.

These messages represent the full implementation of all HP-IB system capabilities; all of these
messages can be sent by this computer. However, each device in a system may be designed to
use only the messages that are applicable to its purpose in the system. It is important for you to
be aware of the HP-IB functions implemented on each device in your HP-IB system to ensure
its operational compatibility with your system.

96 The HP-IB Interface

Bus Commands and Codes

The table below shows the decimal values of IEEE-488 command messages. Remember that
ATN is true during all of these commands. Notice also that these commands are separated into
four general categories: Primary Command Group, Listen Address Group, Talk Address
Group, and Secondary Command Group. Subsequent discussions further describe these com-

mands.
Decimal ASCII Interface
Value Character Message Description
PCG Primary Command Group
1 SOH GTL Go to Local
4 EOT SDC Selected Device Clear
5 ENQ PPC Parallel Poll Configure
8 BS GET Group Execute Trigger
9 HT TCT Take Control
17 DC1 LLO Local Lockout
20 DC4 DCL Device Clear
21 NAK PPU Parallel Poll Unconfigure
24 CAN SPE Serial Poll Enable
25 EM SPD Serial Poll Disable
LAG Listen Address Group
32-62 Space through > Listen Addresses O through 30
(Numbers & Special Chars.)
63 ? UNL Unlisten
TAG Talk Address Group
64-94 @ through 4 Talk Addresses O through 30
(Uppercase ASCII)
95 _ (underscore) UNT Untalk
SCG Secondary Command Group
" through ~ Secondary Commands O through 30
96-126 (Lowercase ASCII)
127 DEL Ignored

Address Commands and Codes
The following table shows the ASCII characters and corresponding codes of the Listen Address
Group and Talk Address Group commands. The next section describes how to send these

commands.

The HP-IB Interface 97

Address Characters Address Code Address Switch Settings
Listen Talk Decimal 5) @) 3 (2) (1)
Space @ 0 0O 0 0 0 O

! A 1 O 0 o0 o0 1
” B 2 0o 0 0 1 O
C 3 0O o0 0 1 1
$ D 4 0O 0o 1 0 O
% E 5 0O 0 1 0 1
& F 6 0 0 1 1 0
’ G 7 0O 0 1 1 1
(H 8 o 1 0 0 O
) I 9 o 1 0 o0 1
* J 10 o 1 0 1 O
+ K 11 0 1 0 1 1
, L 12 0 1 1 0 O
- M 13 0 1 1 0 1
. N 14 0 1 1 1 0
/ O 15 0 1 1 1 1
0 | 16 1 0 0 0 O
1 Q 17 1 0 0 0 1
2 R 18 1 0 0 1 O
3 S 19 1 0 0 1 1
4 T 20 1 0 1 0 0
5 U 21 1 0 1 0 1
6 Vv 22 1 0 1 1 0
7 W 23 1 0 1 1 1
8 X 24 1 1 0 0 O
9 Y 25 1 1 0 0 1
: Z 26 1 1 0 1 O
; [27 1 1 0 1 1
< / 28 1 1 1 0 0
=] 29 1 1 1 0 1
> 0 30 1 1 1 1 0

98 The HP-IB Interface

Explicit Bus Messages

Any “ATN” command can be sent in any order with a procedure called SEND_COMMAND.
This procedure will send the specified command on the bus. The interface must be active
controller. The form of the procedure is:

SEND_COMMAND (interface_select_code + command_character)3

The command character is a normal character expression in the range of CHR(0) through
CHR(255). You should be very careful when using this procedure because you can put devices
into bad or unknown states. The procedure is in module HPIB_1.

Example

SEND_COMMAND(7 477733

H send unlisten ¥
SEND_COMMAND(7 7 _ ") 3

k)

3

send untalk ¥
send duc 01 listen 2
send duc 21 talk ¥

SEND_COMMAND (771 733
SEND_COMMAND (7 + 77) 3

s T 20 T e TR e

The HP-IB Interface

Summary of HP-IB IOSTATUS and
IOCONTROL Registers

Status Register 0
Most Significant Bit

Card Identification
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 0 0 1
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1
Control Register 0 Interface Reset
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Any Bit Will Reset Interface
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1
Status Register 1 Interrupt and DMA Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Interrrupt Interrupt Interrupt DMA DMA
EnablIJepds Re e utped Levelp 0 0 Channel 1 | Channel 0
ques Enabled | Enabled
Value = 128! Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1
Control Register 1 Serial Poll Response Byte
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Device SRQ
Dependent | 1 = | did it Device Dependent Status
Status 0 = | didn't
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value =4 | Value=2 | Value =1

99

100

The HP-IB Interface

Control Register 2
Most Significant Bit

Parallel Poll Response Byte
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
1=True | 1 =True | 1 =True | 1 =True | 1 =True | 1 =True | 1 = True | 1 = True

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value =4 | Value=2 | Value =1
Status Register 3 Controller Status and Address
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active .
Controller | Controller 0 Primary Address of Interface
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value =4 | Value=2 | Value =1
Control Register 3 Set My Address
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not Used Primary Address
Value = 128| Value = 64 | Value — 32 | Value = 16 | Value =8 | Value =4 | Value=2 | Value =1

Status Register 4

The HP-IB Interface 101

Interrupt Status

Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
: Parallel My Talk My Listen Remote/ Talker/
Active Poll EOI Listener
.) Address Address . SPAS Local
Controller [Configuration .) Received Address
Received | Received Change
Change Change
Value = Value = Value = Value = Value = Value = Value = Value =
-32768 16 384 8 192 4 096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unrecognized Secondary Unrecognized
Trigger | Handshake |~/ o009 Command | Clear 9 SRQ IFC
X Universal . . Addressed .)
Received Error While Received Received Received
Command Command
Addressed
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1
Status Register 5 Interrupt Enable Mask
Most Significant Bit
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
. Parallel My Talk My Listen Remote/ Talker/
Active Poll EOI Listener
. . Address Address . SPAS Local
Controller |Configuration ; . Received Address
Received | Received Change
Change Change
Value = Value = Value = Value = Value = Value = Value = Value =
—-32768 16 384 8 192 4 096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unrecognized Secondary Unrecognized
Trigger | Handshake . Command Clear SRQ IFC
; Universal : . Addressed , .
Received Error Command While Received Command Received Received
Addressed
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1

102 The HP-IB Interface

Status Register 6

Interface Status
Most Significant Bit

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
REM LLO ATN - LPAS TPAS LADS TADS *
True :
Value = Value — Value = : Value — Value = Value = Value = Value —
L - 32768 16 384 8 192 4 096 2048 1024 512 256
Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Active
Controller | Controller 0 : Primary Address of Interface
Value = 128| Value = 64 | Value - 32 Value = 16 | Value = 8 | Value - 4 | Value =2 Value = 1

* Least-significant bit of last address recognized

Status Register 7

Bus Control and Data Lines
Most Significant Bit

Bit 15 Bit 14 Bit13 Bit12 Bit 11 Bit 10 Bit 9 Bit 8

ATN DAV NDAC* NRFD’ EOI sRQ** IFC REN

True True True . True True True True True
Value = Value = Value = Value = Value = Value = Value = Value =
-32768 16 384 8192 4 096 2048 1024 512 256

Least Signiticant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DIO8 DIO7 DIO6 DIO5 DI04 DIO3 D102 DIO1

Value = 128]| Value = 64 | Value —~ 32 | Value = 16 | Value =8 | Value =4 | Value=2 | Value =1

* Only if addressed to TALK, else not valid.
** Only if Active Controller, else not valid.

Status Register 8

Unrecognized Command
Most Significant Bit

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Value = 128| Value - 64 | Value ~ 32 | Value = 16 | Value = 8 Value - 4

Value = 2 Value = 1

The HP-IB Interface

Summary of HP-IB IOREAD_BYTE and
IOWRITE_BYTE Registers

IOREAD Registers

Register 1 — Card Identification

Register 3 — Interrupt and DMA Status
Register 5 — Controller Status and Address
Register 17 — Interrupt Status 0

Register 19 — Interrupt Status 1°

Register 21 — Interface Status

Register 23 — Control-Line Status

Register 29 — Command Pass-Through
Register 31 — Data-Line Status'

HP IOREAD_BYTE Register 1 Card Identification
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Future Use
Jumper 0 0 0 0 0 0 1
Installed

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1

Bit 7 is set (1) if the ‘‘future use’’ jumper is installed and clear (0) if not.
Bits 6 through 0 constitute a card identification code (=1 for all HP-IB cards).

Note

This register is only implemented on external HP-IB cards. The inter-
nal HP-IB, at interface select code 7, ‘‘floats’ this register (i.e., the
states of all bits are indeterminate).

HP-IB IOREAD_BYTE Register 3 Interrupt and DMA Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Interrupt Interrupt interrupt
Enabled Request Level X X DMAT DMAD
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1

1 Indicates that an IOREAD_BYTE operation will change the state of the interface.

103

104 The HP-IB Interface

Bit 7 is set (1) if interrupts are currently enabled.

Bit 6 is set (1) when the card is currently requesting service.

Bits 5 and 4 constitute the card’s hardware interrupt level (a switch setting on all external cards,
but fixed at level 3 on the internal HP-IB).

Bit 5 Bit 4 Hardware Interrupt
Level
0 0 3
0 1 4
1 0 5
1 1 6

Bits 3 and 2 are not used (indeterminate).

Bit 1 is set (1) if DMA channel one is currently enabled.

Bit 0 is set (1) if DMA channel zero is currently enabled.

Note
Bits 7, 5, 4, 3, 2, and 1 are not implemented on the internal HP-IB
(interface select code 7).

HP-IB IOREAD_BYTE Register 5

Most Significant Bit

Controller Status and Address
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not)
System Active X ~—————— HP-IB Primary Address of Interface ————————
Controller (MSB) (LSB)
Controller
Value — 128| Value = 64 | Value = 32 | Value =16 | Value =8 | Value - 4 | Value =2 | Value =1

Bit 7 is set (1) if the interface is the System Controller.

Bit 6 is set (1) if the interface is not the current Active Controller and clear (0) if it is the Active

Controller.

Bit 5 is not used.

Bits 4 through 0 contain the card’s Primary Address switch setting. The following bit patterns
indicate the specified addresses.

The HP-IB Interface

Bit Primary
43210 Address
00000 0
00001 1
11101 29
11110 30
11111 (not allowed)

Note
Bits 5 through O are not implemented on the internal HP-IB.

HP-IB IOREAD_BYTE Register 17 MSB of Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Ready Remote/ My
Intl\g?rﬁ t Int:?z t Relist;tised for Next Deltsen(ged SPAS Local Address
P P Byte Change Change
Value = 128 Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1

Bit 7 set (1) indicates that an interrupt has occurred whose cause can be determined by reading
the contents of this register.

Bit 6 set (1) indicates that an interrupt has occurred whose cause can be determined by reading
Interrupt Status Register 1 (IOREAD_BYTE Register 19).

Bit 5 set (1) indicates that a data byte has been received.

Bit 4 set (1) indicates that this interface is ready to accept the next data byte.
Bit 3 set (1) indicates that an End (EOI with ATN =0) has been detected.
Bit 2 set (1) indicates that the Serial-Poll-Active State has been entered.

Bit 1 set (1) indicates that a Remote/Local State change has occurred.

Bit 0 set (1) indicates that a change in My Address has occurred.

105

106 The HP-IB Interface

HP-IB IOREAD_BYTE Register 19 LSB of Interrupt Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

, Secondary
Trigger Handshake Unrecognized Command Clear My Adc_jress SRQ IFC
. Command : . Received) X
Received Error While Received Received Received
Group (MLAorMTA)
Addressed
Value = 128| Value 64 | Value = 32 | Value = 16 | Value = 8 | Value =4 | Value = 2 | Value = 1

Bit 7 set (1) indicates that a Group Execute Trigger command has been received.
Bit 6 set (1) indicates that an Incomplete-Source-Handshake error has occurred.
Bit 5 set (1) indicates that an unidentified command has been received.

Bit 4 set (1) indicates that a Secondary Address has been sent in while in the extended-
addressing mode.

Bit 3 set (1) indicates that the interface has entered the Device-Clear-Active State.
Bit 2 set (1) indicates that My Address has been received.
Bit 1 set (1) indicates that a Service Request has been received.

Bit 0 set (1) indicates that the Inteface Clear message has been received.

HP-1B IOREAD_BYTE Register 21 Interface Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ATN LSB of
REM LLO LPAS TPAS LADS TADS Last
True
Address
Value — 128| Value - 64 | Value = 32 | Value = 16 | Value =8 | Value =4 | Value =2 | Value =1

Bit 7 set (1) indicates that this Interface is in the Remote State.

Bit 6 set (1) indicates that this interface is in the Local Lockout State.
Bit 5 set (1) indicates that the ATN signal line is true.

Bit 4 set (1) indicates that this interface is in the Listener-Primary-Addressed State.
Bit 3 set (
Bit 2 set (
Bit 1 set (

)
) indicates that this interface is in the Talker-Primary-Addressed State.
) indicates that this interface is in the Listener-Addressed State.

)

1
1
1) indicates that this interface is in the Talker-Addressed State.
1

Bit 0 set (1) indicates that this is the least-significant bit of the last address recognized by this
interface.

The HP-IB Interface

HP-IB IOREAD_BYTE Register 23 Control-Line Status
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ATN DAV NDAC* NRFD* EOI SRQ** IFC REN
True True True True True True True True

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value =2 | Value =1

*Only if addressed to TALK, else not valid.
**Only if Active Controller, else not valid.

A set bit (1) indicates that the corresponding line is currently true; a O indicates that the line is
currently false.

HP-IB IOREAD_BYTE Register 29 Command Pass-Through
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1

Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

This register can be read during a bus holdoff to determine which Secondary Command has
been detected.

HP-IB IOREAD_BYTE Register 31 Bus Data Lines
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DI04 DIO3 D102 DIO1

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value =4 | Value=2 | Value =1

A set bit (1) indicates that the corresponding HP-IB data line is currently true; a O indicates the
line is currently false.

107

108 The HP-IB Interface

HP-IB IOWRITE_BYTE Registers

Register 3 — Interrupt Enable

Register 17 — MSB of Interrupt Mask
Register 19 — LSB of Interrupt Mask
Register 23 — Auxiliary Command Register
Register 25 — Address Register

Register 27 — Serial Poll Response
Register 29 — Parallel Poll Response
Register 31 — Data Out Register

HP-IB IOWRITE_BYTE Register 3 Interrupt Enable
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable Enable
Interrupt X X X X X Channel 1 | Channel 0

Value = 128| Value — 64 | Value — 32 | Value = 16 | Value =8 | Value =4 | Value=2 | Value =1

Bit 7 enables interrupts from this interface if set (1) and disables interrupts if clear (0).

Bits 6 through 2 are “‘don’t cares’’ (i.e., their values have no effect on the interface’s opera-
tion).

Bit 1 enables DMA channel 1 if set (1) and disables if clear (0).
Bit 0 enables DMA channel 0 if set (1) and disables if clear (0).

Note

Bits 7 through 1 are not implemented on the internal HP-IB interface
and thus have no effect on the interface’s operation.

IOWRITE_BYTE Register 17 MSB of Interrupt Mask
Setting a bit of this register enables an interrupt for the specified condition. The bit assignments
are the same as for the MSB of Interrupt Status Register (IOREAD Register 17), except that bits
7 and 6 are not used.

IOWRITE_BYTE Register 19 LSB of Interrupt Mask
Setting a bit of this register enables an interrupt for the specified condition. The bit assignments
are the same as for the LSB of Interrupt Status Register (IOREAD Register 19).

HP-IB IOWRITE_BYTE Register 23

Most Significant Bit

The HP-IB Interface

Auxiliary Command Register
Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Set X X Auxiliary Command Function
Value = 128| Value = 64 | Value = 32 | Value =16 | Value=8 | Value=4 | Value=2 | Value =1

Bit 7 is set (1) for a Set operation and clear (0) for a Clear operation.

Bits 6 and 5 are ‘‘don’t cares’’.

Bits 4 through 0 are Auxiliary-Command-Function-Select bits. The following commands can
be sent to the interface by sending the specified numeric values.

Decimal
Value

0 —
128

1 —

129

130

131

132

133

134

135

136

137

10
138

Description of
Auxiliary Command

Clear Chip Reset.
Set Chip Reset.

Release ACDS holdoff. If Address Pass Through is set, it indicates an invalid second-
ary has been received.

Release ACDS holdoff; If Address Pass Through is set, indicates a valid secondary
has been received.

Release RFD holdoff.
Same command as decimal 2 (above).

Clear holdoff on all data.
Set holdoff on all data.
Clear holdoff on EOI only.

Set holdoff on EOI only.

Set New Byte Available (nba) false.
Same command as decimal 5 (above).

Pulse the Group Execute Trigger line, or clear the line if it was set by decimal
command 134.
Set Group Execute Trigger line.

Clear Return To Local (rtl).
Set Return To Local (must be cleared before the device is able to enter the Remote
state).

Causes EOI to be sent with the next data byte.
Same command as decimal 8 (above).

Clear Listener State (also cleared by decimal 138).
Set Listener State.

Clear Talker State (also cleared by decimal 137).
Set Talker State.

{Continued)

109

110 The HP-IB Interface

Decimal
Value

11
139

12
140

13
141

14
142

15
143

16
144

17

145
18

146

19
147

20
148

21
149

22
150

Description of
Auxiliary Command

Go To Standby (gts; controller sets ATN false).
Same command as decimal 11 (above).

Take Control Asynchronously (tca; ATN true).
Same command as decimal 12 {above).

Take Control Synchronously (tcs; ATN true).
Same command as decimal 13 (above).

Clear Parallel Poll.
Set Parallel Poll (read Command-Pass-Through register before clearing).

Clear the Interface Clear line (IFC).
Set Interface Clear (IFC maintained >>100 ps).

Clear the Remote Enable (REN) line.
Set Remote Enable.

Request control (after TCT is decoded, issue this to wait for ATN to drop and receive
control).
Same command as decimal 17 (above).

Release control (issued after sending TCT to complete a Pass Control and set ATN
false)
Same command as decimal 18 (above).

Enable all interrupts.
Disable all interrupts.

Pass Through next Secondary Command.
Same command as decimal 20 (above).

Set T1 delay to 10 clock cycles (2 ps at 5 MHz).
Set T1 delay to 6 clock cycles (1.2 ps at 5 MHz).

Clear Shadow Handshake.
Set Shadow Handshake.

The HP-IB Interface

HP-IB IOWRITE_BYTE Register 25 Address Register
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Enable . .
Dual T;?:Le l?l.':ﬁgf Primary Address
Addressing
Value = 128| Value = 64 | Value = 32 | Value = 16 | Value =8 | Value=4 | Value=2 | Value =1

Bit 7 set (1) enables the Dual-Primary-Addressing Mode.
Bit 6 set (1) invokes the Disable-Listen function.
Bit 5 set (1) invokes the Disable-Talker function

Bits 4 through 0 set the device’s Primary Address (same address bit definitions as READIO
Register 5).

HP-IB IOWRITE_BYTE Register 27 Serial Poll Response Byte
Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Device Request
Dependent q Device-Dependent Status

Status Service

Value = 128| Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

Bits 7 and 5—0 specify the Device-Dependent Status.
Bit 6 sends an SRQ if set (1).

Note

Given an unknown state of the Serial Poll Response Byte, it is neces-
sary to write the byte with bit 6 set to zero followed by a write of the
byte with bit 6 set to the desired final value. This will insure that a
SRQ will be generated if one was desired.

111

112 The HP-IB Interface

HP-IB IOWRITE_BYTE Register 29

Parallel Poll Response
Most Significant Bit

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DIO8 DIO7 DIO6 DIO5 DI04 DIO3 DIO2 D101

Value = 128} Value = 64 | Value = 32 | Value = 16 | Value=8 | Value =4

Value =2 | Value =1

A 1 sets the appropriate bit true during a Parallel Poll; a O sets the corresponding bit false.
Initially, and when Parallel Poll is not configured, this register must be set to all zeros.

HP-IB IOWRITE_BYTE Register 31

Data-Out Register
Most Significant Bit

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DIO8 DIO7 DIO6 DIO5 DI04 DIO3 D102 DIO1

Value = 128 Value = 64 | Value = 32 | Value = 16 | Value=8 | Value=4 | Value=2 | Value =1

The HP-IB Interface 113

Summary of Bus Sequences

The following tables show the bus activity invoked by executing HP-IB statements and func-
tions. The mnemonics used in these tables were defined in the previous section of this chapter.

Note that the bus messages are sent by using single lines (such as the ATN line) and multi-line
commands (such as DCL). The information shows the state of and changes in the state of the
ATN line during these bus sequences. The tables implicitly show that these changes in the
state of ATN remain in effect unless another change is explicitly shown in the table. For
example, if a statement sets ATN (true) with a particular command, it remains true unless the
table explicitly shows that it is set false (ATN). The ATN line is implememted in this manner to
avoid unnecessary transitions in this signal whenever possible. It should not cause any dilem-
mas in most cases.

ABORT_HPIB
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
IFC (duration ATN
Active =100usec) MTA
Controller REN UNL
ATN
ATN Error Error
IFC (duration
Not Active =100 usec)* No
Controller REN Action
ATN

* The IFC message allows a non-active controlier (which is the system controller) to become the active controller.

CLEAR
System Controller Not System Controlier
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active ATN MTA ATN MTA
Controll DCL UNL DCL UNL
ontroller LAG LAG
SDC SDC
Not Active
Controller Error

114 The HP-IB Interface

LOCAL
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active REN MTA ATN MTA
Controller ATN UNL GTL UNL
LAG LAG
GTL GTL
Not Active REN Error Error
Controller
LOCAL_LOCKOUT
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
Active ATN Error ATN Error
Controller LLO LLO
Not Active Error
Controller
PASS_CONTROL
System Controller Net System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN ATN ATN
Active TCT UNL TCT UNL
Controller ATN TAG ATN TAG
TCT TCT
ATN ATN
Not Active
Error
Controller

The HP-IB Interface 115

PPOLL
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN & EOI ATN & EOI
(duration=25ps) (duration=25ps)
Active Read byte Error Read byte Error
Controller EOI EOI
Restore ATN to Restore ATN to
previous state previous state
Not Active
Controller Error

PPOLL_CONFIGURE

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active Error UNL Error UNL
Controller LAG LAG
PPC PPC
PPE PPE
Not Active Error
Controller

PPOLL_UNCONFIGURE

Controller

Error

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG
PPC PPC
PPD PPD
Not Active

116

The HP-IB Interface

REMOTE
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
REN
. ATN
cotve REN MTA Error
ATN UNL
LAG
Not Active REN Error Error
Controller
SPOLL
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
UNL UNL
MLA MLA
TAD TAD
Active Error SPE Error SPE
Controller ATN ATN
Read data Read data
ATN ATN
SPD SPD
UNT UNT
Not Active Error
Controller
TRIGGER
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
i
Active ATN UNL ATN UNL
Controller GET LAG GET
GET LAG
GET
Not Active
Controller Error

Chapter

11

The Datacomm Interface

Introduction

The HP 98628 Data Communications Interface enables your desktop computer to communi-
cate with any device that is compatible with standard asynchronous or HP Data Link data
communication protocols. Devices can include various modems or link adapters, as well as
equipment with standard RS-232C or current loop links.

This chapter discusses both asynchronous and Data Link protocols, and programming techni-
ques. Subject areas that are similar for both protocols are combined, while information that is
unique to one protocol or the other is separated according to application.

Prerequisites

It is assumed that you are familiar with the information presented in Data Communication
Basics (98046-90005), and that you understand data communication hardware well enough to
determine your needs when configuring the datacomm link. Configuration parameters include
such items as half/full duplex, handshake, and timeout requirements. If you have any questions
concerning equipment installation or interconnection, consult the appropriate interface or
adapter installation manuals.

The datacomm interface supports several cable and adapter options. They include:

e RS-232C Interface cable and connector wired for operation with data communication
equipment (male cable connector) or with data terminal equipment (female cable con-
nector).

e HP 13264A Data Link Adapter for use in HP 1000- or HP 3000-based Data Link network
applications

e HP 13265A Modem for asynchronous connections up to 300 baud, including built-in
autodial capability'.

e HP 13266A Current Loop Adapter for use with current loop links or devices.

Some of the information contained in this chapter pertains directly to certain of these devices in
specific applications.

1 The HP 13265A modem is compatible with Bell 103 and Bell 113 Modems, and is approved for use in the USA and Canada. Most other
countries do not allow use of user-owned modems. Contact your local HP Sales and Service office for information about local regulations.

117

118 The Datacomm Interface

Before you begin datacomm operation, be sure all interfaces, cables, connectors, and equip-
ment have been properly plugged in. Power must be on for all devices that are to be used.
Consult applicable installation manuals if necessary.

Protocol

Two protocols are switch selectable on the datacomm interface. They are also software select-
able during normal program operation. The switch setting on the interface determines the
default protocol when the computer is first powered up. Protocol is changed between Async
and Data Link during program operation by selecting the new protocol, waiting for the message
to reach the card, then resetting the card. The exact procedure is explained in the [DCONTROL
register operations section of this chapter.

Asynchronous Communication Protocol

Asynchronous data communication is the most widely used protocol, especially in applications
where high data integrity is not mandatory. Data is transmitted, one character at a time, with
each character being treated as an individual message. Start and stop bits are used to maintain
timing coordination between the receiver and transmitter. A parity bit is sometimes included to
detect character transmission errors. Asynchronous character format is as follows: Each charac-
ter consists of a start bit, 5 to 8 data bits, an optional parity bit, and 1, 1.5, or 2 stop bits, with an
optional time gap before the beginning of the next character. The total time from the beginning
of one start bit to the beginning of the next is called a character frame.

Parity options include:

¢ NONE No parity bit is included.

¢ ODD Parity set if EVEN number of ““1"’s in character bits.
e EVEN Parity set if ODD number of “‘1”’s in character bits.
e ONE Parity bit is set for all characters.

e ZERO Parity bit is zero for all characters.

Here is a simple diagram showing the structure of an asynchronous character and its rela-
tionship to previous and succeeding characters:

| | il] .
l [[| | I !
L L] | 1 L L
!

[——p— | T T
Preceding Line in Start 1 0 1 0 0 0 1 Parity Stop Start Bit
Character Idie State | Bit Bit Bit for Next
(Mark) - Single Character Frame > Character
Beginning of End of

Character Character

The Datacomm Interface 119

Data Link Communication Protocol

Data Link protocol overcomes the data integrity limitations of Async by handling data in blocks.
Each block is transmitted as a stream of individual asynchronous characters, but protocol
control characters and block check characters are also transmitted with the data. The receiver
uses the protocol control characters to determine block boundaries and data format. Block
check characters are used to detect transmission errors. If an error occurs, the block is retrans-
mitted until it is successfully received. Block protocol and format is similar to Binary Synchro-
nous Communication (BSC or Bisync, for short).

Data Link protocol provides for two transmission modes: Transparent, and Normal. In transpa-
rent mode, any data format can be transferred because datacomm control characters are
preceded by a DLE character. If a control character is sent without an accompanying DLE, itis
treated as data. When normal mode is used, only ASCII data can be sent, and datacomm
control characters are not allowed in the data stream. The HP 1000 and HP 3000 computers
usually transmit in transparent mode. All transmissions from your desktop computer are sent as
transparent data. If your application involves non-ASCII data transfers (discussed later in this
chapter), be sure the HP 1000 or HP 3000 network host is using transparent mode for all
transmissions to your computer.

Each data block sent to the network host by the datacomm interface is structured as follows:

l¢—Start of Block End of Block
[Q¥
D, S G D AN D E B B
Le | Ty I I text (data) o e | Tx | Sc| S
— N——) [—————
1 2 3 4 5

1. The “start transmission’’ control characters identify the beginning of valid data. If a DLE is
present, the data is transparent; If absent, data is normal. All data from your desktop compu-
ter is transparent.

2. The terminal identification characters are included in blocks sent to the network host. Blocks
received from the network host do not contain these two characters.

3. Data characters are transmited in succession with no time lapse between characters.

4. The “end transmission” control characters identify the end of data. DLE ETX or DLE ETB
indicate transparent data. ETX or ETB indicates normal data.

5. Block check characters (usually two characters) are used to verify data integrity. If the value
received does not match the value calculated by the receiver, the entire block is rejected by

the receiver. Block check includes GID and DID characters in transmissions to the network
host.

Protocol control characters are stripped from the data transfer, and are not passed from the
interface to the computer. For information about network polling, terminal selection and other
Data Link operations, consult the Data Link network manuals supplied with the HP 1000 or HP
3000 network host computer.

120 The Datacomm Interface

Data Transfers Between Computer and Interface

Data transfers between your desktop computer and its datacomm interface involve two mes-
sage types: control blocks, and data. Both types are encountered in both output and input
operations as follows:

® Outbound control blocks are created by IOCONTROL procedures.
e Outbound data messages are created by the output procedures.

® [nbound control blocks are created by certain protocol operations such as Data Link block
boundaries, or Async prompt, end-of-line, parity/framing error, or break detection.

® [nbound data messages are created by the interface as messages are received from the
remote. They are transferred to the Pascal programs via the input procedures.

Outbound Control Blocks

Outbound control blocks are messages from your computer to the datacomm interface that
contain interface control information. They are usually generated by IOCONTROL procedures,
although TRANSFER_END creates a control block that terminates a given Async transmission
or forces a block to be sent on the Data Link. Outbound control blocks are serially queued with
data. An exception to the queued control block rule is output to Control Register 0 (card reset)
which is executed immediately.

Note

When an interface card reset is executed by use of a IOCONTROL
procedure, the control block that results is transmitted directly to the
interface. It is not queued up, so any previously queued data and
control blocks are destroyed. To prevent loss of data, be sure that all
queued messages have been sent before resetting the datacomm
interface. I0Status Register 38 returns a value of 1 when the out-
bound queue is empty. Otherwise, its value is 0. To prevent loss of
inbound data, [OStatus Register 5 must return a value of zero prior
to reset.

Inbound Control Blocks

Inbound control blocks are messages from the interface to the computer that identify protocol
control information. Which item(s) are allowed to create a control block is determined by the
contents of [OControl Register 14. [0OStatus Registers 9 and 10 identify the contents of the
block, and IOControl Register 24 defines what protocol characters are also included with
inbound Async data messages. Refer to the [OControl and [OStatus Register section at the end
of this chapter for details about register contents for various control block types.

The Datacomm Interface 121

Two types of information are contained in each control block: Type and Mode. The TYPE is
contained in IOSTATUS register 9; the MODE in IOSTATUS register 10. Type and Mode
values can be used to interpret datacomm operation as follows:

Async Protocol Control Blocks

Type Mode Interpretation

250 1 Break received (channel A).

251 1! Framing error in the following character.

251 2! Parity error in the following character.

251 3! Both Framing and Parity error in the following character.
252 1 End-of-line terminator detected.

253 1 Prompt received from remote.

Data Link Protocol Control Blocks

Type I Mode | Interpretation

254 1 Preceding block terminated by ETB character.
254 2 Preceding block terminated by ETX character.
253% (See following table for Mode interpretation.)

Mode Bit(s) | Interpretation

0 1 = Transparent data in following block.
0 =Normal data in following block.

2,1 00 = Device Select (most common).
01 = Group Select
10 =Line Select

3 1 =Command Channel
0 =Data Channel

For Data Link applications, control blocks are normally set up for end-of-block (ETB or ETX).
Control blocks are then used to terminate TRANSFER_END operation, or are trapped via an
I/O escape. Control block contents are not important for most applications unless you are doing
sophisticated protocol-control programming.

For Async applications, terminal emulator programs usually use prompt and end-of-line control
blocks. Use of other functions such as break or error detection depend on the requirements of
the individual application.

1 Parity/framing error control blocks are not generated when characters with parity and/or framing errors are replaced by an underscore (_)
character.

2 This type is used mainly in specialized applications. In most cases, you can expect a Mode value of zero or one for Type 253 Data Link control
blocks. For most Data Link applications, control blocks are not used by programmers.

122 The Datacomm Interface

Outbound Data Messages
Outbound data messages are created when an output procedure is executed. Here is a short
summary of how output parameters can affect datacomm operation.

® Async protocol: Data is transmitted directly from the outbound queue. When operating in
half-duplex, TRANSFER_END causes the interface to turn the line around and allow the
remote device to send information back (line turn-around is initiated when the interface
sets the Request-to-send line low). TRANSFER_END has no effect when operating in full
duplex.

e Data Link protocol: Data messages are concatenated until at least 512 characters are

available. then a block of 512 characters is sent. Block boundaries may or may not
coincide with the end of a given output message.
You can force transmission of shorter blocks by using the TRANSFER_END procedure.
The interface then transmits the last pending block regardless of its length. This technique
is useful for ensuring that block boundaries coincide with message boundaries, or for
sending one message string per block when you are transmitting short records.

Inbound Data Messages

Inbound data messages are created by the datacomm interface as information is received from
the remote. Input procedures are terminated when a control block is encountered or the input
variable is filled. Whether control characters are included in the data stream depends on the
configuration of Control Register 24 (Async operation only). Control information is never
included in inbound data messages when using Data Link protocol.

With this brief introduction to the data communications capabilities of the HP 98628 Data-
comm Interface, you are ready to begin programming your desktop computer for datacomm
operation. The next section of this chapter introduces Pascal datacomm programming techni-
ques.

The Datacomm Interface

Overview of Datacomm Programming

Your desktop computer uses several I/O Library facilities for data communication with various
computers, terminals, and other peripheral devices. Datacomm programs will include part or all
of the following elements:

e Input procedures (including transfers)
e Output procedures (including transfers)
o [OSTATUS functions

e [OCONTROL procedures
e High level control procedures.

The input and output procedures are described in the previous chapters. Later sections of this
chapter discuss the [OSTATUS and IOCONTROL operations. The I/O Library provides several
high level control procedures to set up the serial interface card and its parameters. These
procedures are in the module SERIAL_3 and consist of the following procedures. Note that
these procedures are for ASYNC operations ONLY.

Set Baud Rate

This procedure will set the interface baud rate. It is of the form:
SET_.BAUD_RATE (isc + rate)3

The rate is a real expression with the range of 0 through 19 200.

Set Stop Bits

This procedure will set the number of stop bits on the interface. The procedure is of the form:
SET_STOP_BITS (isc » number_of_bits)3

The number of bits is a real expression with valid values of 1, 1.5 and 2.

Set Character Length

This procedure will set the number of bits in a character on the specified interface. The proce-
dure is of the form:

SET_CHAR_LENGTH (isc + number_of_bits)3

The number of bits is an integer expression with valid values of 5, 6, 7, and 8 bits per character.

Set Parity

This procedure sets the parity mode of the specified interface. The procedure is of the form:

SET_PARITY (isc » parity)3

123

124 The Datacomm Interface

The parity parameter is an enumerated type with the following values:

no. parity
odd _parity
even_parity
zero_parity
one_parity

Example Terminal Emulator

The following program is a very simple terminal emulator. It uses overlap transfers to bring data
into the computer and uses handshake /O to send data from the computer. This is not a
supported product — merely an example program.

$5VSPROG ON%
$UCSD ON$
$DEBUG ON%

PROGRAM TERMINAL ¢ INPUT,OUTPUT ;KEYBOARD) 3

IMPORT iodeclarations:
dgeneral O

deneral .1y
deneral .2
deneral 3,
dgemeral -4,
serial._ iy
serial. 3}

CONST mvsc = 203
bufsize = 100053
Kbdurmit = 23

VAR i : INTEGERS
my bt r buf_info_tvred
tufchar : CHARGS
oldbufehar : CHARS
Kbdehar : CHAR:
half_durlex : BOOLEANS
auto_1°f : BOOLEANS

BEGIN

TRY

ioinitializes

mysc 221003 { no Protocol ¥
mysc 123,003 { mno handshake ¥
mysc+Zd127)3{ Pass all chars »
mysc 128 40) 3 { card EQOL = none ¥

iocontrol (
1nocontrol (
iocontrol (
iocontrol (
mysc»2d00) s
myscrodd_Parity)s
mysc+7)

myscllds

set_baud_rate
set_parity
set_char_lendth
set_stor_hits

iocontrol (mysc+8,63) 3 { set all modem lines %

1ocontrol (myscal2s1) 3 { connect the card ¥

half_durle-s = TRUE 3
auto_1f 1= TRUE 3

iobuffer{mvybuf sbufsize)s)
transfer(mvscioverlarsto_memory smvbufsbufsize)i

WRITELN('TERMINAL EMULATOR READY)3

REPEAT

IF NOT (UNITBUSY (Kbdunit))
THEN BEGIN
IF EOLN(Kevboard)

THEN BEGIN
READ(Kevboardskbdchar) i
Kbdchar 3= io.carriage_rtni

END

ELSE BEGIN
READ(Kevboardskbdchar) i

ENDS { of IF EOLN 1}

IF half_durlex
THEN BEGIN
WRITE(Kbdchar) i
END3
IF auto_1f AND (Kbdehar = io_carriade-rtn)
THEN BEGIN
writechar(myscsKbdchar)j
Kbdchar 1= io_line-feedsj
END 3
writechar(mvscsKbdchar)i
END 3

IF buffer_data(mybuf) <3 O
THEN BEGIN
oldbufechar := bufchari
readbuffer(mybufsbufchar)i
IF bufchar = io_line_feed
THEN BEGIN
IF oldbufchar = io_carriade_rtn
THEN BEGIN
{ nothing ¥
END
ELSE BEGIN
WRITE(io_carriage_rtn)s
END 3
END
ELSE BEGIN
WRITE(bufchar)si
END 3
END 3

IF (NDT isc_busy(mybuf)) AND (buffer_datal(myvbuf) = 0)
THEN BEGIN
transfer(myscroverlarpsto_memorysmybufsbufsize)s
END 3

UNTIL FALSE]S
RECOVER BEGIN

PAGE(outpPut) i
WRITELNS
WRITELN(‘escare code : ‘sescaprecode) i
IF ESCAPECODE=ioescarecode
THEN BEGIN
WRITELN(‘some I/0 Pproblem has occurred’)i
WRITELN(iocerror_message(ioe_result))}
WRITELN(‘on select code ‘sice_isc:id)}
END
ELSE BEGIN
IF ESCAPECDODE< >-20
THEN BEGIN
WRITELN(‘some non-I1/0 Probklem has occurred’)s
END
ELSE BEGIN

continued

The Datacomm Interface 125

126 The Datacomm Interface

WRITELN(’stor key pressed)3
END 3
END 3

ESCAPE(ESCAPECODE) 3§
END 3

END .

Establishing the Connection

Determining Protocol and Link Operating Parameters

Before information can be successfully transferred between two devices, a communication link
must be established. You must include the necessary protocol parameters to ensure compatibil-
ity between the communicating machines. To determine the proper parameters for your ap-
plication, select Async or Data Link protocol, then answer the following questions:

For BOTH Async and Data Link Operation:
® [s a modem connection being used? What handshake provisions are required? (Data Link

does not use modems, but multi-point Async modem connections use a protocol compati-
ble with Data Link.)

e [s half-duplex or full-duplex line protocol being used?
For Async Operation ONLY:
e What line speed (baud rate) is being used for transmitting?
e What line speed is being used for receiving?
e How many bits (excluding start, stop, and parity bits) are included in each character?
e What parity is being used: none, odd, even, always zero, or always one?
® How many stop bits are required on each character you transmit?
® What line terminator should you use on each outgoing line?
e How much time gap is required between characters (usually 0)?
e What prompt, if any, is received from the remote device when it is ready for more data?
e What line terminator, if any, is sent at the end of each incoming line?
For Data Link Operation ONLY:

® What line speed (baud rate) is being used? (Data Link uses the same speed in both
directions.)

e What parity is being used: none (HP 1000 network host). or odd (HP 3000 network
host)?

e What is the device Group [Dentifier (GID) and Device IDentifier (DID) for your terminal?

e What is the maximum block length (in bytes) the network host can accept from your
terminal?

All these parameters are configured under program control by use of IOCONTROL proceaures.
Alternately, default values for line speed, modem handshake, parity, and Async or Data Link
protocol selection can be set using the datacomm interface configuration switches. Other de-
fault parameters are preset by the datacomm interface to accommodate common configura-
tions. You can use the defaults, or you can override them with [OCONTROL procedures for
program clarity and immunity to card settings. Default IOControl Register values are shown in

The Datacomm Interface 127

the IOCONTROL and IOSTATUS register tables in the back of this chapter. The HP 98628
Datacomm Interface Installation manual (98628-90000) explains how to set the default switch-
es on the interface.

The next section of this chapter shows a summary of the available default options and switch
settings for both Async and Data Link.

Using Defaults to Simplify Programming

The datacomm interface includes two switch clusters. One cluster is used to program the select
code and interrupt level. The other cluster sets defaults for protocol, line speed (baud rate),
modem handshake, and parity. Setting the defaults on the card eliminates the need to program
the corresponding interface IOCONTROL registers. These defaults are useful in applications
where the configuration of the link is rarely altered, and the program is not used on other
machines with dissimilar configurations. They also enable a beginning programmer to use
output and input procedures to perform simple datacomm operations without using [OCON-
TROL or IOSTATUS statements. On the other hand, where link configuratiion may vary, or
where programs are used on several different machines with dissimilar configurations, it is
usually worthwhile to override the defaults with IOCONTROL procedures. This assures known
datacomm behavior, independent of interface defaults.

Here, for your convenience is a brief summary of the default switch options:

| tJ
0%

=

o)

Default Switches

Parity Bits/Char Hardware Handshake Baud Rate Stop Bits

00 =None 8 00 =Handshake OFF, 000=110 2
01 =None 7 non-modem connection’ 001=150 2
10=0dd 7 01 =FULL Duplex modem 010=300 1
11 =Even 7 connection? 011=600 1
10=HALF Duplex modem| |100=1200 1

connection ? 101 =2400 1

11 = Handshake ON, 110=4800 1

non-modem connection’ 111=9600 1

Async Default Configuration Switches

' Default No Activity timeout: Disabled
2 Default No Activity timeout: 10 minutes

128 The Datacomm Interface

| [(oo ‘;LT

Default Switches /q :1]:

DID: (*“@”...“G”) Baud Rate Hardware Handshake

000=@ 100=D 00=300 00 =Handshake OFF, non-modem connection
001=A 101 =E 01=1200 ||01 =FULL Duplex modem connection
010=B 110=F 10=9600 |]10=HALF Duplex modem connection
011=C 111=G 11=19200]| |11 = Handshake ON, non-modem connection

Default GID ="A" Default No Activity timeout: 10 minutes

Data Link Default Configuration Switches

Resetting the Datacomm Interface

Before you establish a connection, the datacomm interface must be in a known state. The
datacomm interface does not automatically disconnect from the datacomm link when the
computer reaches the end of a program. To prevent potential problems caused by unknown
link conditions left over from a previous session, it is a good practice to reset the interface card
at the beginning of your program before you start configuring the datacomm connection.
Resetting the card causes it to disconnect from the line and return to a known set of initial
conditions.

Example
IORESET (203 3

Protocol Selection

During power-up and reset, the card uses the default switches to preset the card to a known
state. The protocol select switch defines which protocol the card uses at power-up only. If the
default protocol is the same as you are using, you can skip the protocol selection statements.
However. if the switch might be set to the wrong protocol, or if you want to change protocol in
the middle of a program, you can use a [OCONTROL procedure to select the protocol. After
the protocol is selected, reset the card again to make the change. Here is how to do it:

The Datacomm Interface 129

Select the protocol to be used:

IOCONTROL (SC+3:1)3 {Select Asvnc Protocol}
or

IOCONTROL (5c:+3:+2) 3 {Select Data LinK Protocol?

Wiait until the protocol select message has been sent to the card, then reset the card. The Reset
command restarts the interface microcomputer using the selected protocol.

REPEAT
UNTIL IOSTATUS(S5c+38) =1 3
IORESET (8B¢) 3

Note

Be careful when resetting the interface card during normal program
operation. Data and Control information are sent to the card in the
same sequence as the statements originating the information are
executed. When a card reset is initiated by a
IOCONTROL procedure, the reset is not placed in the queue with
outbound data, but is executed immediately. Therefore, if there is
other information in the output queue waiting to be sent, a reset can
cause the data to be lost. To prevent loss of data, use IOSTATUS
function (register 38) to verify that all data transfers have run to
completion before you reset the interface.

You are now ready to program datacomm options that are related to the selected protocol. In
applications where defaults are used, the options are very simple. The following pair of exam-
ples shows how to set up datacomm options for each protocol.

Datacomm Options for Async Communication

This section explains how to configure the datacomm interface for asynchronous data com-
munication. The example used shows how to set up all configurable options without consider-
ing default values. Some statements in the example are redundant because they override
interface defaults having the same value. Others may or may not be redundant because they
override configuration switch options. The remaining statements are necessary because they
override the default values, replacing them with non-default values required for proper opera-
tion of the example program. If you are not familiar with Asynchronous protocol, consult the
section on protocol for the needed background information.

Control Block Contents

Configuration of the link begins with register 14 which determines what information is placed in
the control blocks that appear in the input (receive) queue. In this example, only the end-of-line
position and prompts are identified. Parity or framing errors in received data, and received
breaks are not identified in the queue. This register interacts with Control registers 28 thru 33.

130 The Datacomm Interface

Datacomm Line Timeouts

Registers 16-19 set timeout values to force an automatic disconnect from the datacomm link
when certain time limits are exceeded. For most applications, the default values are adequate.
A value of zero disables the timeout for any register where it is used. Each register accepts
values of 0 thru 255: units vary with the register function.

® Register 16 (Connection timeout) sets the time limit (in seconds) allowed for connecting to
the remote device. It is useful for aborting unsuccessful attempts to dial up a remote
computer using public telephone networks.

® Register 17 (No Activity timeout) sets an automatic disconnect caused by no datacomm
activity for the specified number of minutes. Default value is determined by default hand-
shake switch setting. Default is not affected by IOCONTROL procedures to 10Control
Register 23 (hardware handshake).

® Register 18 (Lost Carrier timeout) disconnects when:

Full Duplex: Data Set Ready (Data Mode) or Data Carrier Detect go false, or
Half Duplex: Data Set Ready goes false,

indicating that the carrier from the remote modem has disappeared from the line.
Value is in multiples of 10 milliseconds.

e Register 19 (Transmit timeout) disconnects when a loss-of-clock occurs or a clear-to-send
(CTS) is not returned by the modem within the specified number of seconds.

Line Speed (Baud Rate)

The transmit and receive line speed(s) are set by IOControl Registers 20 and 21, respectively.
Each is independent of the other, and they are not required to have identical values. The
following baud rates are available for Async communication:

Register Baud Register Baud Register Baud Register Baud
Value Rate Value Rate Value Rate Value Rate

0 0! 4 134.5 8 600 12 3600

1 50 5 150¢ 9 1200¢ 13 4800?

2 75 6 200 10 1800 14 9600

3 110¢ 7 300¢ 11 2400¢ 15 19 200

All configurable line speeds are available to IOCONTROL Registers 20 and 21. Only the eight
speeds indicated can be selected using the default switches (see the switch configuration dia-
gram earlier in this chapter). When the configuration switch defaults are used, transmit and
receive speeds are identical. The selected line speed must not exceed the capabilities of the
modem or link.

1 An external clock must be provided for this option.

2 These speeds can be programmed using the default switches on the interface card. Other speeds are accessed by CONTROL statements. (The
HP 13265A Modem can be operated up to 300 baud)

The Datacomm Interface 131

Handshake
Registers 22 and 23 configure handshake parameters. There are two types of handshake:

e Software or protocol handshake specifies which of the participants is allowed to transmit
while the other agrees to receive until the exchange is reversed. Options include:

1. No handshake, commonly used with connections to non-interactive devices
such as printers.

2. Eng/Ack (EQ/AK) or DC1/DC3 handshake, with the desktop computer confi-
gured either as a host or a terminal. Handshake characters are defined by regis-
ters 26 and 27.

3. DC1/DC3 handshake with the desktop computer as both a host AND a terminal.
Handshake characters are defined by registers 26 and 27. This option simplifies
communication between two desktop computers.

e Hardware or modem handshake that establishes the communicating relationship between
the interface and the associated datacomm hardware such as a modem or other link
device. The four available options are:

1. Handshake Off, non-modem connection — most commonly used for 3-wire
direct connections to a remote device.

2. Full Duplex modem connection — used with full-duplex modems or equivalent
connections.

3. Half Duplex modem connection — used with half-duplex modems or equivalent
connections.

4. Handshake On, non-modem connection — used with printers and other similar
devices that use the Data Carrier Detect (DCD) and Clear-to-send (CTS) lines to
signal the interface card. When DCD is held down by the peripheral, the inter-
face ignores incoming data. When CTS is held down, the interface does not
transmit data to the device until CTS is raised.

Options 2 and 3 are usually associated with modems or similar devices, but may be used
occasionally with direct connections when the remote device provides the proper signals. Refer
to the table at the end of this chapter for a list of handshake signals and how they are handled
for each cable or adapter option.

132 The Datacomm Interface

Handling of Non-data Characters

Register 24 specifies what non-data characters are to be included in the input queue. For each
bit that is set, the corresponding information is passed along with the incoming data. If the bit is
not set, the information is discarded, and is not included in the inbound data stream that is
passed to the desktop computer by the interface.

Bit 0: Include handshake characters in data stream. They are defined by Control Registers
26 and 27.

Bit 1: Include incoming end-of-line character(s). EOL characters are defined by Control
Registers 28-30.

Bit 2: Include incoming prompt character(s). Prompt is defined by Control Registers 31-
33.

Bit 3: Include any null characters encountered.
Bit 4: Include any DEL (rubout) characters in data.

Bit 5: Include any CHR$(255) encountered. This character is encountered ONLY when
8-bit characters are received.

Bit 6: Change any characters received with parity or framing errors to an underscore. If
this bit is not set, all inbound characters are transferred exactly as received. with or
without errors.

Register 25 is not used.

Protocol Handshake Character Assignment

Registers 26 and 27 establish what characters are to be used for handshaking between com-
municating machines. You can select the values of 6 (AK) or 17 (DC1) for register 26, and 5
(EQ) or 19 (DC3) for register 27. Any ASCII value from O thru 255 can be used, but non-
standard values should be reserved for exceptional situations.

End-of-line Recognition

Registers 28, 29, and 30 operate in conjunction with registers 14 (control block mask) and 24
(non-data character stripping) and defines the end-of-line sequence used to identify boundaries
between incoming records. Register 28 (value of 0, 1 or 2) defines the number of characters in
the sequence, while registers 29 and 30 contain the decimal equivalent of the ASCII characters.
If register 28 is set for one character, register 30 is not used. Register 29 contains the first EOL
character, and register 30, if used, contains the second. If register 28 is zero, registers 29 and 30
are ignored and the interface cannot recognize line separators.

Prompt Recognition

Registers 31, 32, and 33 operate in conjunction with registers 14 and 24 and define the prompt
sequence that identifies a request for data by the remote device. As with end-of-line recogni-
tion, the first register defines the number of characters (0, 1, or 2), while the second and third
registers contain the decimal equivalents of the prompt character(s). Register 33 is not used
with single-character prompts. If register 31 is zero, registers 32 and 33 are ignored and the
interface is unable to recognize any incoming prompts.

The Datacomm Interface 133

Character Format Definition
Registers 34 through 37 are used to define the character format for transmitted and incoming

data.

® Register 34 sets the character length to 5, 6, 7, or 8 bits. The value used is the number of
bits per character minus five (0=5 bits, 3 =8 bits). When 8-bit format is specified, parity
must be Odd, Even, or None (parity ““‘1”” or *‘0”’ cannot be used).

® Register 35 specifies the number of stop bits sent with each character. Values of 0, 1, or 2
are used to select 1, 1.5, or 2 stop bits, respectively.

® Register 36 specifies the parity to be used. Options include:

Register
Value Parity Result

0 None Characters are sent with no parity bit. No parity checks are made on
incoming data.

1 Odd! Parity bit is set if there is an EVEN number of ones in the character
code. Incoming characters are also checked for odd parity.

2 Even' Parity bit is set if there is an ODD number of ones in the character
code.

3 0 Parity bit is present, but always zero. No parity checks are made on
incoming data.

4 1 Parity bit is present, but always one. No parity checks are made on

incoming data.

Parity must be odd, even, or none when 8-bit characters are being transferred.

® Register 37 sets the time gap (in character times, including start, stop, and parity bits)
between one character and the next in a transmission. It is usually included to allow a
peripheral, such as a teleprinter, to recover at the end of each character and get ready for
the next one. A value of zero causes the start bit of a new character to immediately follow
the last stop bit of the preceding character.

Control Register 38 is not used.

Break Timing

Register 39 sets the break time (2-255 character times). A Break is a time gap sent to the remote
device to signify a change in operating conditions. It is commonly used for various interrupt
functions. The interface does not accept values less than 2. Register 6 is used to transmit a
break to the remote computer or device.

Datacomm Options for Data Link Communication

This section explains how to configure the datacomm interface for Data Link operation.If you
are not familiar with Data Link protocol and terminology, consult the section on protocol for the
needed background information.

1 Parity sense is based on the number of ones in the character including the parity bit. An EVEN number of ones in the character, plus the parity
bit set produces an ODD parity. An ODD number of ones in the character plus the parity bit set produces an EVEN parity.

134 The Datacomm Interface

Control Block Contents

Data Link configuration begins with IOControl Register 14. This register determines what
information is to be placed in control blocks and included with inbound data transferred from
the interface to the desktop computer.

e ETX (Bit 1) identifies the end of a transmission block that contains one or more complete
records.

o ETB (Bit 2) identifies the end of a transmission block where the last record is continued in
the next block of data.

® Bit 0 causes a control block to be inserted that identifies the beginning of a new block of
data.

Datacomm Line Timeouts, and Line Speed

Registers 15 through 19 are functionally identical for both Async and Data Link. Refer to the
preceding Async section for more information. Register 20 sets the line speed for both transmit-
ting and receiving (Data Link does not accommodate split-speed operation). The following line
speed options are available:

Register Baud Register Baud Register Baud Register Baud
Value | Rate Value | Rate Value | Rate Value | Rate
0 ()’ 9 1200¢ 12 3600 15 19 200¢
7 300¢ 10 1800 13 4800
8 600 11 2400 14 9600*

Terminal Identification

Registers 21 and 22 specify the terminal identifier characters for the datacomm interface.
Register 21 contains the GID (Group IDentifier), and register 22 contains the DID (Device
[Dentifier. Values of 0-26 correspond to the characters @, A, B, . . ., Z. These registers must be
configured to match the terminal identification pair assigned to your device by the Data Link
Network Manager. In the example, Line 1320 is redundant because it duplicates the default
GID value. Line 1330 overrides the DID default switch on the interface card, and may or may
not be necessary. Alternate methods for assigning different GID/DIDs are shown following the
group of configuration [IOCONTROL procedures.

Handshake

Register 23 establishes the hardware handshake type. There is no formal software handshake
with Data Link because the network host controls all data transfers. Hardware or modem
handshake options are identical to Asynchronous operation. Handshake should be OFF (regis-
ter set to 0) when using the HP 13264A Data Link Adapter. When you are using non-standard
interconnections such as direct or modem links to the network host, select the handshake
option that fits your application. Refer to the table at the end of this chapter for a list of
handshake signals and how they are handled for each cable or adapter option.

1 An external clock must he provided for this option

2 These speeds can be programmed using the default switches on the interface card. Other speeds are accessed by CONTROL statements.

The Datacomm Interface 135

Transmitted Block Size

Register 24 defines the maximum transmitted block length. When transmitting blocks of data to
the network host, the block length must not exceed the available buffer space on the receiving
device. Block size can be specified for increments of two from 2 to 512 characters per block. A
value of zero forces the block length to a maximum of 512 bytes. For other values, the block
length limit is twice the value sent to the register. For example, a register value of 130 produces
a transmitted block length not exceeding 260 characters (bytes).

Parity
Register 36 defines the parity to be used. Unlike Async, Data Link has only two parity options:
None, or Odd. Odd parity is:

Register Parity Application
Value |
Required for operation with HP 1000 network host

0 | NONE
1 ODD

Required for operation with HP 3000 network host

Registers 25 through 35, and 37 and above are not used.

Connecting to the Line

Interface configuration is now complete. You are ready to begin connecting to the datacomm
line. The exact procedure used to connect to the line varies slightly, depending on the type of
link being used. Before you connect, you must know what the link requirements are, including
dialing procedures, if any.

Switched (Public) Telephone Links

When you are using a public or switched telecommunications link, the modem connection
between computers must be established. The HP 13265A Modem can be used in any Async
application that requires a Bell 103- or Bell 113-compatible modem operating at up to 300
baud line speed. However, the HP 13265A Modem is not suitable for data rates exceeding 300
baud. For higher baud rates, use a modem that is compatible with the one at the remote
computer site. Modems cannot be used for remote connections from a terminal to the data link.

Private Telecommunications Links

Private (leased) links require modems unless the link is short enough for direct connection (up
to 50 feet, depending on line speed). The HP 13265A Modem can be used at data rates up to
300 baud. For higher speeds, a different modem must be used.

Direct Connection Links

For short distances, a direct connection may be used without modems or adapters, provided
both machines use compatible interfaces. Async connections normally use RS-232C interfaces.
You can also operate as a Data Link terminal directly connected to an HP 1000 or HP 3000
host computer through a dedicated Multipoint Async interface on the network host, although
such connections are unusual.

136 The Datacomm Interface

Data Link Connections

Most Data Link connections use an HP 13264A Data Link Adapter to connect directly to the
Data Link. In special situations, a modem may be used to communicate with a Multipoint Async
interface on the HP 1000 or HP 3000 network host. When the Data Link Adapter is used, no
special procedures are required. If you are using a leased or switched telecommunications link,
the procedures are the same as when using point-to-point Async with modems.

Connection Procedure

This section describes procedures for modem connections using telephone telecommunications
circuits. If you are NOT using a switched, modem link, skip to the next section: Initiating the
Connection.

Dialing Procedure for Switched (Public) Modem Links

Except for dialing, connection procedures do not usually vary between switched and dedicated
links. Dialing procedures depend on whether the modem is designed for manual or automatic
dialing. Automatic dialing can be used with the HP 13265A Modem. but other modems must be
operated with manual dialing unless you design your own interface to an Automatic Calling
Unit. For manual dialing procedures, consult the operating manual for the modem you are
using.

Automatic Dialing with the HP 13265A Modem:

The automatic dialer in the HP 13265A Modem is accessed by Control Register 12. The
IOCONTROL procedure is followed by an output procedure that contains the telephone num-
ber string, including dial rate and timing characters. The two statements set up the automatic
dialer, but dialing is not started until a “start connection” command is sent to I0Control
Register 12. Here is an example sequence:

IOCONTROL (Scs12+2) 3
WRITESTRING (Sc,’> 8 BRE (303)-3555-12347)3

Unrecognized characters are ignored.
3-second wait for secondary dial tone.
Select FAST dial rate.

The output procedure contains several essential elements.

e The first character (*“>""), if included, specifies a fast dialing rate. If it is omitted. the default
slow dialing rate is used.

e A time delay character “‘@’™ may be inserted anywhere in the string. A one-second time
delay is executed in the dialing sequence each time a delay character is encountered.

e Numeric character sequences define the telephone number. Multiple dial-tone sequences,
such as when calling out from a PBX (Private Branch Exchange), can be used by inserting
a suitable delay to wait for the next dial tone.

e Unrecognized characters such as parentheses, hyphens, and spaces can be included for
clarity. They are ignored by the automatic dialer.

e Up to 500 characters can be included in the telephone number string.

The Datacomm Interface 137

Here is how an autodial connection is executed:

e The IOCONTROL (Sc1242) places a ‘“‘start dialing” control block in the outbound
queue to the interface. The OUTPUT statement places the telephone number string (in-
cluding spaces and other characters) in the queue after the control block. When the
interface encounters the control block, it transfers the string to the HP 13265A Modem’s
autodial circuit. No other action is taken at this time.

e When IOCONTROL (Sc»12:1) is executed, another control block is queued up.
When the interface encounters the block, it sends a “‘start connection” command to the
modem. The modem then disconnects from the line, waits two seconds, then reconnects.
The autodialer waits 500 milliseconds, then starts executing the telephone number string.
The string is executed character-by-character in the same sequence as sent by the output
procedure.

e If your application requires more than 500 milliseconds to guarantee a dial tone is present,
you can increase the delay by adding delay characters (““@’’) where needed, one second
per character. Be sure to provide adequate delays in multiple dial tone sequences, such as
when calling through a private branch exchange (PBX) to a public telephone network.

e When dialing is complete, the modem is connected to the line, and you are ready to start
communication. The next section explains how to determine when connection is com-
plete.

Two dialing rates are available: slow (default) and fast. To select the fast rate, you must include
the fast rate character (‘“>"") as the FIRST character in the telephone number string. Here is a
summary of differences between the two options:

Parameter | Slow Dialing I Fast Dialing

Click Length 60 milliseconds 32.5 milliseconds
Click Gap 40 milliseconds 17.5 milliseconds
Number Gap 700 milliseconds 300 milliseconds

One to ten dial pulses (clicks) are sent for each digit 1 through 0, respectively. The number gap
is the time lag between the end of the last click of one number and the beginning of the first click
of the next number.

Most Bell System facilities can handle both fast and slow dialing rates, but private or independ-
ent telephone systems or companies may require slow dialing.

Initiating the Connection

After you have executed the necessary dialing procedures, if any, you are ready to initiate the
connection. The following statement is used to start the connection:

IOCONTROL (Scs12,1) i{Start Connection.?}

This staternent sends a control block to the interface telling it to connect to the datacomm line. If
the HP 13265A Modem is being used, and the autodialer is enabled, it starts dialing the
number. Otherwise, the interface executes a direct connection to the line, or tells the modem or
data link adapter to connect.

138 The Datacomm Interface

The status of the connection process can be monitored by using the IOSTATUS function. The
following lines hold the computer in a continuous loop until the connection is complete:

REPEAT

State := JOSTATUS(Sc.12)%

IF State=2 THEN WRITELN (‘Dialing’}s

IF State=1 THEN WRITELN {(‘Trving to Connect’)3
UNTIL State=31
WRITELN (‘Connected’) 3

Refer to the I0Status and IOControl Register section for interpretation of the values in [OStatus
Register 12. Only values of 1, 2, or 3 are usually encountered at this stage of the program.

As soon as IOStatus Register 12 indicates that connection is complete, you are ready to
continue into the main body of the terminal emulator or other program you are writing. This
completes the datacomm initialization and connection phase of the program.

Datacomm Errors and Recovery Procedures

Several errors can be encountered during datacomm operation. They are listed here with
probable causes and suggested corrective action.

Error Description and Probable Cause

306 Interface card failure. This error occurs during interface self-test, and indicates an interface card
hardware malfunction. You can repeat the power-up self-test by pressing the Reset key. If the
error persists, replace the defective card. Using a defective card may result in improper data-
comm operation, and should be considered only as a last resort.

313 USART receive buffer overflow. The SIO buffer is not being cleared fast enough to keep up
with incoming data. This error is uncommon, and is usually caused by excessive processing
demands on the interface microprocessor. To correct the problem, examine Pascal prog-
ram flow to reduce interference with normal interface operation. This error causes the
interface to disconnect from the datacomm line and go into a SUSPENDED state. Clear or
reset the interface card to recover.

314 Receive Buffer overflow. Data is not being consumed fast enough by the desktop compu-
ter. Consequently, the buffer has filled up causing data loss. This is usually caused by
excessive program demands on the desktop computer CPU, or by poor program structure
that does not allow the desktop computer to properly service incoming data when it
arrives. Modify the Pascal program(s) to allow more frequent interrupt processing by the
desktop computer, or change to a lower baud rate and/or use protocol handshaking to
hold off incoming data until you are ready to receive it. This error causes the interface to
disconnect from the datacomm line and go into a SUSPENDED state. Clear or reset the
interface to recover.

315 Missing Clock. A transmit timeout has occurred because the transmit clock has not allowed
the card to transmit for a specified time limit (Control Register 19). This error can occur
when the transmit speed is 0 (external clock), and no external clock is provided, or be
caused by a malfunction. The interface is disconnected from the datacomm line and is
SUSPENDED. To recover. correct the cause, then reset the card.

Error

The Datacomm Interface

Description and Probable Cause

316

317

318

319

325

326

327

CTS false too long. Due to clear-to-send being false on a half-duplex line, the interface
card was unable to transmit for a specified time limit (Control Register 19). The card has
disconnected from the datacomm line, and is in a SUSPENDED state. To recover, deter-
mine what has caused the problem, correct it, then reset or clear the interface card.

Lost Carrier disconnect. Data Set Ready (DSR) (and/or Data Carrier Detect, if full-duplex)
went inactive for the specified time limit (Control Register 18). This condition is usually
caused by the telecommunications link or associated equipment. The card has discon-
nected from the datacomm line and is in a SUSPENDED state. To recover, clear or reset
the interface card.

No Activity Disconnect. The interface card disconnected from the datacomm line automati-
cally because no information was transmitted or received within the time limit specified by
Control Register 17. The card is in a SUSPENDED state. Clear or reset the interface to
recover.

Connection not established. The card attempted to establish connection, but Data Set
Ready (DSR) (and Data Carrier Detect, if full duplex) was not active within the time limit
specified by Control Register 16. The card has disconnected from the datacomm line and is
in a SUSPENDED state. Clear or reset the interface to recover.

lliegal DATABITS/PARITY combination. IOCONTROL procedures have attempted to
program 8 bits per character and parity “1”” or *0”". The IOCONTROL procedure causing
the error is ignored, and the previous setting remains unchanged. To correct the problem,
change the IDCONTROL procedure(s) and/or interface default switch settings.

Register address out of range. An IOCONTROL or STATUS function has attempted to
address a non-existing register. The command is ignored, and the interface card state
remains unchanged.

Register value out of range. An [OCONTROL procedure attempted to place an illegal

value in a defined register. The command is ignored, and the interface card state remains
unchanged.

Error Recovery

When any error from Error 313 through Error 319 occurs, it forces the interface card to
disconnect from the datacomm line. When a forced disconnect terminates the connection, the
interface is placed in a SUSPENDED state, indicated by Status Register 12 returning a value of
4. The interface cannot be reconnected to the datacomm line when it is SUSPENDED.
ABORT_SERIAL and IORESET are used to recover from the suspended state and resume
normal card operation.

To recover from a SUSPENDED interface, two programmable options are available, all of
which destroy any existing data in the transmit and receive queues. They are:

e The ABORT_SERIAL procedure clears the receive and transmit queues.

o RESET interface (I0Control Register 0 or IORESET) clears all buffers and queues, and
resets all IOCONTROL options to their power-up state EXCEPT the protocol which is
determined by the most recent IDCONTROL statement (if any) addressed to register 3
since power-up.

Another option is available. Pressing (CLR 10)) causes a hardware reset to be sent to all
interfaces. This completely resets the datacomm interface to its power-up state with protocol
and other options determined by the default switch settings.

139

140 The Datacomm Interface

Datacomm Programming Helps

This section is designed to assist you in writing datacomm programs for special applications by
discussing selected techniques and characteristics that can present obstacles to the beginning
programmer.

Terminal Prompt Messages

Care must be exercised to ensure that messages are never transmitted to the network host if the
host is not prepared to properly handle the message. Receipt of a poll from the host does not
necessarily mean that the host can handle the message properly when it is received. Therefore,
prompts or interpretation of messages from the host are used to determine the status of the host
operating system.

Prompts are message strings sent to the terminal by a cooperating program. They are well-
defined and predictable, and are usually tailored to specific applications. When the terminal
interacts directly with RTE or one or more subsystems, the process becomes less straightfor-
ward. Each subsystem usually has its own prompt which is not identical to other subsystem
prompts. To maintain orderly communication with subsystems, you must interpret each mes-
sage string from the host to determine whether it is to be treated as a prompt.

Prevention of Data Loss on the HP 1000

On the HP 1000, the RTE Operating System manages information transfer between programs
or subsystems and system [/O devices, including DSN/DL. Terminals are continually polled by
the host’s data link interface (unless auto-poll has been disabled by use of an HP 1000 File
Manager CN command). Since there is no relationship between automatic polling and HP 1000
program and subsystems execution, it is possible to poll a terminal when there is no need for
information from that terminal. If the terminal sends a message in response to a poll when no
data is being requested, the HP 1000 discards the message, causing the data to be lost, and
treats it as an asynchronous interrupt. A break-mode prompt is then sent to the terminal by the
host.

The terminal must determine that the host is ready to receive a message in order to ensure that
messages are properly handled by the host. This is done by checking all messages from the host
(CREAD until queue is empty) and not transmitting (CWRITE) until a prompt message or its
equivalent has been received (unless you want to enter break-mode operation). Since the HP
1000 does not generate a consistent prompt message for all programs and subsystems, it is
easiest to use cooperating programs to generate a predictable prompt. If your application
requires interaction with other subsystems, prompts can usually be most easily identified by the
ABSENCE of the sequence: “r“rEc.. at the end of a message. When a proper sequence has
been identified, you are reasonably certain that the host is ready for your next message block.

The Datacomm Interface 141

Here is an example of host messages where a prompt is sent by the File Manager (FMGR) and
answered by a RUN,EDITR command. Note that the prompt from the interactive editor fits the
description of a prompt because a line-feed is not included after the carriage-return in the
sequence.

tEc Prompt is sent by FMGR to terminal.
RUJEDITR EDITR Run command is sent to host.
SOURCE FILE NAMET?Cr-rEc_ File name message is sent by the host, followed by a
Cr/BLEc. prompt sequence which has no line-feed. Sequence is

different from FMGR prompt.

Whenever an unexpected message from a terminal is received by RTE, it is treated as an
asynchronous interrupt which terminates normal communication with that terminal. A break-
mode prompt is sent to the terminal by RTE, and the next message is expected to be a valid
break-mode command. If the the message is not a valid command (such as data in a file being
transferred), the data is discarded, and an error message is sent to the terminal. If, in the
meantime, the cooperating program or subsystem generates an input request, the next data
block is sent to the proper destination, but is out of sequence because at least one block has
been lost. You can prevent such data losses and the mass confusion that usually ensues
(especially during high-speed file transfers to the host), by disabling auto-poll on the HP 1000
data link interface. With auto-poll OFF, no polls are sent to your terminal unless the host is
prepared to receive data.

Disabling Auto-poll on the HP 1000

To operate with auto-poll OFF, log on to the network host, disable auto-poll, perform all
datacomm activities and file transfers, enable auto-poll, then log off. If you don’t enable
auto-poll at the end of a session, polling is suspended to your terminal after log-off, and
you cannot reestablish communication with the host unless polling is restored from
another terminal or the network host System Console.

The auto-poll ON/OFF commands are:

CNLLU#+23B,101401B Auto-poll OFF!
CN.LU#,23B,001401B Auto-poll ON!

where LU# us the logical unit number assigned to your terminal.

When auto-poll is disabled, no polls are sent to your terminal unless an input request is initiated
by the cooperating program or subsystem on the network host. When the request is made, a
poll is scheduled, and polling continues until a reply is received from the terminal. When the
reply is received, and acknowledged, polling is suspended until the next input is scheduled.
Operating with auto-poll OFF is especially useful when transferring files TO the HP 1000.
Otherwise, in most applications, it is practical to leave auto-poll ON,

1 The File Manager CN (Control}) command parameters for the multipoint interface are described in more detail in the 91730A Multipoint
Terminal Interface Subsystem User’s Guide (91730-90002).

142 The Datacomm Interface

Prevention of Data Loss on the HP 3000

Neither the HP 1000 nor the HP 3000 provide a DC1 poll character when they are ready for
data inputs from DSN/DL. The HP 3000, like the HP 1000, also discards data if it has not
requested the transfer. Since the HP 3000 does not provide an auto-poll disable command,
you must interpret messages from the HP 3000 to determine that it is ready for the next data
block before you transmit the block.

Secondary Channel, Half-duplex Communication

Half-duplex telecommunications links frequently use secondary channel communication to
control data transmission and provide for proper line turn-around. This is done by using
Secondary Request-to-send (SRTS) and Secondary Data Carrier Detect (SDCD) modem sig-
nals.

Consider two devices communicating with each other: Each connects to the datacomm link,
then waits for SDCD to become active (true). As each device connects to the line, Secondary
Request-to-send is enabled, causing each modem to activate its secondary carrier output. The
Secondary Data Carrier Detect is, in turn, activated by each modem as it receives the secondary
data carrier from the other end.

When communication begins, the first device to transmit (assumed to be your computer, in this
case) clears its Secondary Request-to-send modem line. This removes the secondary data
carrier from the line, causing the other modem to clear SDCD to its terminal or computer,
telling it that you have the line. (The modems also maintain proper line switching and prevent
timing conflicts so both ends don’t try to get the line simultaneously.) The other device receives
data, and must not attempt to transmit until you relinquish control of the line as indicated by
SDCD true. After you finish transmitting, you must again activate SRTS so that SDCD can be
activated to the other device, allowing it to use the line if it has a message.

Communication Between Desktop Computers
Two desktop computers can be connected, directly, or by use of modems. DC1/DC3 hand-

shake protocol can be used conveniently to enable each computer to transmit at will without
risk of buffer or queue overruns. To ensure proper operation, the following guidelines apply:

¢ Set up IOControl Register 22 with a value of 5. This allows both computers to act either as
host or terminal in any given situation, depending on which one initiates the action.

® Set up 10Control Registers 26 and 27 for DC1 and DC3 respectively, or use two other
characters if necessary.

® Data to be transmitted must NOT contain any characters matching the contents of IOCon-
trol Register 26 or 27. This prevents the receiving interface from confusing data with
control characters.

o [f both computers attempt to transmit large amounts of data at the same time, a lock-up
condition may result where each side is waiting for the other to empty its buffers.

The Datacomm Interface 143

Cable and Adapter Options and Functions

The HP 98628A Datacomm Interface is available with RS-232C DTE and DCE cable configura-
tions, or it can be connected to various modems or adapters for other applications.

DTE and DCE Cable Options

DTE and DCE cable options are designed to simplify connecting two desktop computers
without the use of modems. The DTE cable (male RS-232 connector) is configured to make the
datacomm interface look like standard data terminal equipment when it is connected to an
RS-232C modem. The DCE cable (female RS-232 connector) is configured so that it eliminates
the need for modems in a direct connection. When you connect two computers to each other in
a direct non-modem connection, both datacomm interfaces are functionally identical. The DCE
cable acts as an adapter so that both interfaces behave exactly as they would if they were
connected to a pair of modems by means of DTE cables.

Several signal lines are rerouted in the DCE cable so that, in direct connections, outputs from
one interface are connected to the corresponding inputs on the other interface. Certain outputs

on each interface are also connected to inputs on the same card by “‘loop-back’™ connections in
the DCE cable.

The schematic diagram in this section shows two datacomm interfaces directly connected
through a DTE-DCE cable pair. Note that the DCE cable wiring complements the DTE cable so
that output signals are properly routed to their respective destinations. Signal names at the
RS-232C connector interface are the same as the signal names for the DTE interface. However,
because the DCE cable adapts signal paths, the signal name at the RS-232C connector does
not necessarily match the signal name at the DCE interface. Connector pin numbers are
included in the diagram for your convenience.

RS-232C DTE (male) Cable Signal Identification Tables

Signal Interface | RS-232C
RS-232C V.24 Pin # Pin # Mnemonic | /O Function

AA 101 24 1 - - Safety Ground

BA 103 12 2 Out Transmitted Data

BB 104 42 3 In Received Data

CA 105 13 4 RTS Out Request to Send

CB 108 44 5 CTS In Clear to Send

CC 107 45 6 DSR In Data Set Ready

AB 102 48 7 - - Signal Ground

CF 109 46 8 DCD In Data Carrier Detect
SCF (OCR2) 122 47 12 SDCD In Secondary DCD

DB 114 41 15 In DCE Transmit Timing

DD 115 43 17 In DCE Receive Timing
SCA (OCD2) 120 15 19 SRTS Out Secondary RTS

CDh 108.1 14 20 DTR Out Data Terminal Ready
CE (OCR1) 125 9 22 RI In Ring Indicator
CH (OCD1) 111 40 23 DRS Out Data Rate Select

DA 113 7 24 Out Terminal Transmit Timing

144 The Datacomm Interface

Optional Circuit Driver/Receiver Functions

Two optional drivers and receivers are used with the RS-232C cable options. Their functions
are as follows:

Drivers Receivers
Name Function Name Function
OCD1 Data Rate Select OCR1 Ring Indicator
0OCD2 Secondary Request-to-send OCR2 Secondary Data Carrier Detect

OCD3 Not used
OCD4 Not used

OCD2 is used for autodial pulsing in the HP 13265A Modem. None of the optional
drivers and receivers are used for Data Link and Current Loop Adapters.
